mirror of
https://github.com/ankitects/anki.git
synced 2025-09-18 14:02:21 -04:00
Fix/fallback to non-manual entry when first_of_last_learn_entries non found (#3639)
* Fix/fallback to non-manual entry when first_of_last_learn_entries non found * refactor single_card_revlog_to_item(s) * update unit test of bypassed_learning_is_handled * move comment line * remove first_relearn_entries * skip cram entry * only pick non_manual_entries after ignore date * fallback to non_manual_entries if the first learning step is before the ignore date * pass ci * update ignore_before_date_between_learning_steps_when_reviewing * shorten the comment * Minor refactoring - fsrs_items_for_memory_state - fsrs_items_for_memory_states - single_card_revlog_to_item -> fsrs_item_for_memory_state (to match fsrs_items_for_training) - single_card_revlog_to_items -> reviews_for_fsrs - Use struct instead of tuple for reviews_for_fsrs output - Don't return count, since we're already returning the filtered list * More renaming/comment tweaks - non_manual_entries -> first_user_grade_idx - change comments to reflect the fact that we're working backwards - Use "user-graded" rather than "non-manual" * Add extra unit test * Some wording tweaks
This commit is contained in:
parent
4d20945319
commit
474dbc2812
4 changed files with 120 additions and 118 deletions
|
@ -32,7 +32,7 @@ use crate::deckconfig::DeckConfig;
|
|||
use crate::deckconfig::LeechAction;
|
||||
use crate::decks::Deck;
|
||||
use crate::prelude::*;
|
||||
use crate::scheduler::fsrs::memory_state::single_card_revlog_to_item;
|
||||
use crate::scheduler::fsrs::memory_state::fsrs_item_for_memory_state;
|
||||
use crate::scheduler::states::PreviewState;
|
||||
use crate::search::SearchNode;
|
||||
|
||||
|
@ -437,7 +437,7 @@ impl Collection {
|
|||
// and will need its initial memory state to be calculated based on review
|
||||
// history.
|
||||
let revlog = self.revlog_for_srs(SearchNode::CardIds(card.id.to_string()))?;
|
||||
let item = single_card_revlog_to_item(
|
||||
let item = fsrs_item_for_memory_state(
|
||||
&fsrs,
|
||||
revlog,
|
||||
timing.next_day_at,
|
||||
|
|
|
@ -14,7 +14,7 @@ use crate::card::CardType;
|
|||
use crate::prelude::*;
|
||||
use crate::revlog::RevlogEntry;
|
||||
use crate::revlog::RevlogReviewKind;
|
||||
use crate::scheduler::fsrs::params::single_card_revlog_to_items;
|
||||
use crate::scheduler::fsrs::params::reviews_for_fsrs;
|
||||
use crate::scheduler::fsrs::params::Params;
|
||||
use crate::scheduler::states::fuzz::with_review_fuzz;
|
||||
use crate::search::Negated;
|
||||
|
@ -71,7 +71,7 @@ impl Collection {
|
|||
};
|
||||
let fsrs = FSRS::new(req.as_ref().map(|w| &w.params[..]).or(Some([].as_slice())))?;
|
||||
let historical_retention = req.as_ref().map(|w| w.historical_retention);
|
||||
let items = fsrs_items_for_memory_state(
|
||||
let items = fsrs_items_for_memory_states(
|
||||
&fsrs,
|
||||
revlog,
|
||||
timing.next_day_at,
|
||||
|
@ -156,7 +156,7 @@ impl Collection {
|
|||
let historical_retention = config.inner.historical_retention;
|
||||
let fsrs = FSRS::new(Some(config.fsrs_params()))?;
|
||||
let revlog = self.revlog_for_srs(SearchNode::CardIds(card.id.to_string()))?;
|
||||
let item = single_card_revlog_to_item(
|
||||
let item = fsrs_item_for_memory_state(
|
||||
&fsrs,
|
||||
revlog,
|
||||
self.timing_today()?.next_day_at,
|
||||
|
@ -175,7 +175,7 @@ impl Card {
|
|||
pub(crate) fn set_memory_state(
|
||||
&mut self,
|
||||
fsrs: &FSRS,
|
||||
item: Option<FsrsItemWithStartingState>,
|
||||
item: Option<FsrsItemForMemoryState>,
|
||||
historical_retention: f32,
|
||||
) -> Result<()> {
|
||||
let memory_state = if let Some(i) = item {
|
||||
|
@ -196,22 +196,21 @@ impl Card {
|
|||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub(crate) struct FsrsItemWithStartingState {
|
||||
pub(crate) struct FsrsItemForMemoryState {
|
||||
pub item: FSRSItem,
|
||||
/// When revlogs have been truncated, this stores the initial state at first
|
||||
/// review
|
||||
pub starting_state: Option<MemoryState>,
|
||||
}
|
||||
|
||||
/// When updating memory state, FSRS only requires the last FSRSItem that
|
||||
/// contains the full history.
|
||||
pub(crate) fn fsrs_items_for_memory_state(
|
||||
/// Like [fsrs_item_for_memory_state], but for updating multiple cards at once.
|
||||
pub(crate) fn fsrs_items_for_memory_states(
|
||||
fsrs: &FSRS,
|
||||
revlogs: Vec<RevlogEntry>,
|
||||
next_day_at: TimestampSecs,
|
||||
historical_retention: f32,
|
||||
ignore_revlogs_before: TimestampMillis,
|
||||
) -> Result<Vec<(CardId, Option<FsrsItemWithStartingState>)>> {
|
||||
) -> Result<Vec<(CardId, Option<FsrsItemForMemoryState>)>> {
|
||||
revlogs
|
||||
.into_iter()
|
||||
.chunk_by(|r| r.cid)
|
||||
|
@ -219,7 +218,7 @@ pub(crate) fn fsrs_items_for_memory_state(
|
|||
.map(|(card_id, group)| {
|
||||
Ok((
|
||||
card_id,
|
||||
single_card_revlog_to_item(
|
||||
fsrs_item_for_memory_state(
|
||||
fsrs,
|
||||
group.collect(),
|
||||
next_day_at,
|
||||
|
@ -273,41 +272,35 @@ fn get_last_revlog_info(revlogs: &[RevlogEntry]) -> HashMap<CardId, LastRevlogIn
|
|||
/// a truncated revlog), we return the starting state inferred from the first
|
||||
/// revlog entry, so that the first review is not treated as if started from
|
||||
/// scratch.
|
||||
pub(crate) fn single_card_revlog_to_item(
|
||||
pub(crate) fn fsrs_item_for_memory_state(
|
||||
fsrs: &FSRS,
|
||||
entries: Vec<RevlogEntry>,
|
||||
next_day_at: TimestampSecs,
|
||||
historical_retention: f32,
|
||||
ignore_revlogs_before: TimestampMillis,
|
||||
) -> Result<Option<FsrsItemWithStartingState>> {
|
||||
) -> Result<Option<FsrsItemForMemoryState>> {
|
||||
struct FirstReview {
|
||||
interval: f32,
|
||||
ease_factor: f32,
|
||||
}
|
||||
let first_review = entries
|
||||
.iter()
|
||||
// ignore manual and rescheduled revlogs and revlogs before the cutoff
|
||||
.find(|e| e.button_chosen > 0 && e.id.0 >= ignore_revlogs_before.0)
|
||||
.map(|e| FirstReview {
|
||||
interval: e.interval.max(1) as f32,
|
||||
ease_factor: if e.ease_factor == 0 {
|
||||
2500
|
||||
} else {
|
||||
e.ease_factor
|
||||
} as f32
|
||||
/ 1000.0,
|
||||
});
|
||||
if let Some((mut items, revlogs_complete, _)) =
|
||||
single_card_revlog_to_items(entries, next_day_at, false, ignore_revlogs_before)
|
||||
{
|
||||
let mut item = items.pop().unwrap();
|
||||
if revlogs_complete {
|
||||
Ok(Some(FsrsItemWithStartingState {
|
||||
if let Some(mut output) = reviews_for_fsrs(entries, next_day_at, false, ignore_revlogs_before) {
|
||||
let mut item = output.fsrs_items.pop().unwrap();
|
||||
if output.revlogs_complete {
|
||||
Ok(Some(FsrsItemForMemoryState {
|
||||
item,
|
||||
starting_state: None,
|
||||
}))
|
||||
} else if let Some(first_review) = first_review {
|
||||
} else if let Some(first_user_grade) = output.filtered_revlogs.first() {
|
||||
// the revlog has been truncated, but not fully
|
||||
let first_review = FirstReview {
|
||||
interval: first_user_grade.interval.max(1) as f32,
|
||||
ease_factor: if first_user_grade.ease_factor == 0 {
|
||||
2500
|
||||
} else {
|
||||
first_user_grade.ease_factor
|
||||
} as f32
|
||||
/ 1000.0,
|
||||
};
|
||||
let mut starting_state = fsrs.memory_state_from_sm2(
|
||||
first_review.ease_factor,
|
||||
first_review.interval,
|
||||
|
@ -317,15 +310,12 @@ pub(crate) fn single_card_revlog_to_item(
|
|||
if first_review.ease_factor <= 1.1 {
|
||||
starting_state.difficulty = (first_review.ease_factor - 0.1) * 9.0 + 1.0;
|
||||
}
|
||||
// remove the first review because it has been converted to the starting state
|
||||
item.reviews.remove(0);
|
||||
if item.reviews.is_empty() {
|
||||
Ok(None)
|
||||
} else {
|
||||
Ok(Some(FsrsItemWithStartingState {
|
||||
item,
|
||||
starting_state: Some(starting_state),
|
||||
}))
|
||||
}
|
||||
Ok(Some(FsrsItemForMemoryState {
|
||||
item,
|
||||
starting_state: Some(starting_state),
|
||||
}))
|
||||
} else {
|
||||
// only manual and rescheduled revlogs; treat like empty
|
||||
Ok(None)
|
||||
|
@ -360,15 +350,15 @@ mod tests {
|
|||
// cards without any learning steps due to truncated history still have memory
|
||||
// state calculated
|
||||
let fsrs = FSRS::new(Some(&[])).unwrap();
|
||||
let item = single_card_revlog_to_item(
|
||||
let item = fsrs_item_for_memory_state(
|
||||
&fsrs,
|
||||
vec![
|
||||
RevlogEntry {
|
||||
ease_factor: 2500,
|
||||
interval: 100,
|
||||
..revlog(RevlogReviewKind::Review, 100)
|
||||
..revlog(RevlogReviewKind::Review, 99)
|
||||
},
|
||||
revlog(RevlogReviewKind::Review, 1),
|
||||
revlog(RevlogReviewKind::Review, 0),
|
||||
],
|
||||
TimestampSecs::now(),
|
||||
0.9,
|
||||
|
@ -394,9 +384,9 @@ mod tests {
|
|||
difficulty: 5.7909784,
|
||||
}),
|
||||
);
|
||||
// but if there's only a single revlog entry, we'll fall back on current card
|
||||
// state
|
||||
let item = single_card_revlog_to_item(
|
||||
// cards with a single review-type entry also get memory states from revlog
|
||||
// rather than card states
|
||||
let item = fsrs_item_for_memory_state(
|
||||
&fsrs,
|
||||
vec![RevlogEntry {
|
||||
ease_factor: 2500,
|
||||
|
@ -406,17 +396,15 @@ mod tests {
|
|||
TimestampSecs::now(),
|
||||
0.9,
|
||||
0.into(),
|
||||
)?;
|
||||
assert!(item.is_none());
|
||||
card.interval = 123;
|
||||
card.ease_factor = 2000;
|
||||
card.ctype = CardType::Review;
|
||||
card.set_memory_state(&fsrs, item, 0.9)?;
|
||||
)?
|
||||
.unwrap();
|
||||
assert!(item.item.reviews.is_empty());
|
||||
card.set_memory_state(&fsrs, Some(item), 0.9)?;
|
||||
assert_int_eq(
|
||||
card.memory_state,
|
||||
Some(FsrsMemoryState {
|
||||
stability: 122.99994,
|
||||
difficulty: 7.334526,
|
||||
stability: 99.999954,
|
||||
difficulty: 5.840841,
|
||||
}),
|
||||
);
|
||||
Ok(())
|
||||
|
|
|
@ -229,43 +229,56 @@ fn fsrs_items_for_training(
|
|||
.chunk_by(|r| r.cid)
|
||||
.into_iter()
|
||||
.filter_map(|(_cid, entries)| {
|
||||
single_card_revlog_to_items(entries.collect(), next_day_at, true, review_revlogs_before)
|
||||
reviews_for_fsrs(entries.collect(), next_day_at, true, review_revlogs_before)
|
||||
})
|
||||
.flat_map(|i| {
|
||||
review_count += i.2;
|
||||
review_count += i.filtered_revlogs.len();
|
||||
|
||||
i.0
|
||||
i.fsrs_items
|
||||
})
|
||||
.collect_vec();
|
||||
revlogs.sort_by_cached_key(|r| r.reviews.len());
|
||||
(revlogs, review_count)
|
||||
}
|
||||
|
||||
/// Transform the revlog history for a card into a list of FSRSItems. FSRS
|
||||
/// expects multiple items for a given card when training - for revlog
|
||||
/// `[1,2,3]`, we create FSRSItems corresponding to `[1,2]` and `[1,2,3]`
|
||||
/// in training, and `[1]`, [1,2]` and `[1,2,3]` when calculating memory
|
||||
/// state.
|
||||
pub(crate) struct ReviewsForFsrs {
|
||||
/// The revlog entries that remain after filtering (e.g. excluding
|
||||
/// review entries prior to a card being reset).
|
||||
pub filtered_revlogs: Vec<RevlogEntry>,
|
||||
/// FSRS items derived from the filtered revlogs.
|
||||
pub fsrs_items: Vec<FSRSItem>,
|
||||
/// True if there is enough history to derive memory state from history
|
||||
/// alone. If false, memory state will be derived from SM2.
|
||||
pub revlogs_complete: bool,
|
||||
}
|
||||
|
||||
/// Filter out unwanted revlog entries, then create a series of FSRS items for
|
||||
/// training/memory state calculation.
|
||||
///
|
||||
/// Returns (items, revlog_complete, review_count).
|
||||
/// revlog_complete is assumed when the revlogs have a learning step, or start
|
||||
/// with manual scheduling. When revlogs are incomplete, the starting difficulty
|
||||
/// is later inferred from the SM2 data, instead of using the standard FSRS
|
||||
/// initial difficulty. review_count is the number of reviews used after
|
||||
/// filtering out unwanted ones.
|
||||
pub(crate) fn single_card_revlog_to_items(
|
||||
/// Filtering consists of removing revlog entries before the supplied timestamp,
|
||||
/// and removing items such as reviews that happened prior to a card being reset
|
||||
/// to new.
|
||||
pub(crate) fn reviews_for_fsrs(
|
||||
mut entries: Vec<RevlogEntry>,
|
||||
next_day_at: TimestampSecs,
|
||||
training: bool,
|
||||
ignore_revlogs_before: TimestampMillis,
|
||||
) -> Option<(Vec<FSRSItem>, bool, usize)> {
|
||||
) -> Option<ReviewsForFsrs> {
|
||||
let mut first_of_last_learn_entries = None;
|
||||
let mut first_user_grade_idx = None;
|
||||
let mut revlogs_complete = false;
|
||||
// Working backwards from the latest review...
|
||||
for (index, entry) in entries.iter().enumerate().rev() {
|
||||
if matches!(
|
||||
(entry.review_kind, entry.button_chosen),
|
||||
(RevlogReviewKind::Learning, 1..=4)
|
||||
) {
|
||||
if entry.review_kind == RevlogReviewKind::Filtered && entry.ease_factor == 0 {
|
||||
continue;
|
||||
}
|
||||
let within_cutoff = entry.id.0 > ignore_revlogs_before.0;
|
||||
let user_graded = matches!(entry.button_chosen, 1..=4);
|
||||
if user_graded && within_cutoff {
|
||||
first_user_grade_idx = Some(index);
|
||||
}
|
||||
|
||||
if user_graded && entry.review_kind == RevlogReviewKind::Learning {
|
||||
first_of_last_learn_entries = Some(index);
|
||||
revlogs_complete = true;
|
||||
} else if first_of_last_learn_entries.is_some() {
|
||||
|
@ -274,32 +287,25 @@ pub(crate) fn single_card_revlog_to_items(
|
|||
(entry.review_kind, entry.ease_factor),
|
||||
(RevlogReviewKind::Manual, 0)
|
||||
) {
|
||||
// If we find a `Learn` entry after the `Forget` entry, we should
|
||||
// ignore the entries before the `Forget` entry
|
||||
// Ignore entries prior to a `Reset` if a learning step has come after,
|
||||
// but consider revlogs complete.
|
||||
if first_of_last_learn_entries.is_some() {
|
||||
revlogs_complete = true;
|
||||
break;
|
||||
// Ignore entries prior to a `Reset` if the user has graded a card
|
||||
// after the reset.
|
||||
} else if first_user_grade_idx.is_some() {
|
||||
revlogs_complete = false;
|
||||
break;
|
||||
// If we don't find a `Learn` entry after the `Forget` entry, it's
|
||||
// a new card and we should ignore all entries
|
||||
// User has not graded the card since it was reset, so all history
|
||||
// filtered out.
|
||||
} else {
|
||||
return None;
|
||||
}
|
||||
}
|
||||
}
|
||||
if !revlogs_complete {
|
||||
revlogs_complete = matches!(
|
||||
entries.first(),
|
||||
Some(RevlogEntry {
|
||||
review_kind: RevlogReviewKind::Manual,
|
||||
..
|
||||
}) | Some(RevlogEntry {
|
||||
review_kind: RevlogReviewKind::Rescheduled,
|
||||
..
|
||||
})
|
||||
);
|
||||
}
|
||||
if training {
|
||||
// While training ignore the entire card if the first learning step of the last
|
||||
// While training, ignore the entire card if the first learning step of the last
|
||||
// group of learning steps is before the ignore_revlogs_before date
|
||||
if let Some(idx) = first_of_last_learn_entries {
|
||||
if entries[idx].id.0 < ignore_revlogs_before.0 {
|
||||
|
@ -307,38 +313,29 @@ pub(crate) fn single_card_revlog_to_items(
|
|||
}
|
||||
}
|
||||
} else {
|
||||
// While reviewing if the first learning step is before the ignore date,
|
||||
// ignore every review before and including the last learning step
|
||||
// While reviewing, if the first learning step is before the ignore date,
|
||||
// we ignore it, and will fall back on SM2 info and the last user grade below.
|
||||
if let Some(idx) = first_of_last_learn_entries {
|
||||
if entries[idx].id.0 < ignore_revlogs_before.0 && idx < entries.len() - 1 {
|
||||
let last_learn_entry = entries
|
||||
.iter()
|
||||
.enumerate()
|
||||
.rev()
|
||||
.find(|(_idx, e)| e.review_kind == RevlogReviewKind::Learning)
|
||||
.map(|(idx, _)| idx);
|
||||
|
||||
entries.drain(..(last_learn_entry? + 1));
|
||||
revlogs_complete = false;
|
||||
first_of_last_learn_entries = None;
|
||||
}
|
||||
}
|
||||
}
|
||||
let first_relearn = entries
|
||||
.iter()
|
||||
.enumerate()
|
||||
.find(|(_idx, e)| {
|
||||
e.id.0 > ignore_revlogs_before.0 && e.review_kind == RevlogReviewKind::Relearning
|
||||
})
|
||||
.map(|(idx, _)| idx);
|
||||
if let Some(idx) = first_of_last_learn_entries.or(first_relearn) {
|
||||
// start from the (re)learning step
|
||||
if let Some(idx) = first_of_last_learn_entries {
|
||||
// start from the learning step
|
||||
if idx > 0 {
|
||||
entries.drain(..idx);
|
||||
}
|
||||
} else if training {
|
||||
// when training, we ignore cards that don't have any learning steps
|
||||
return None;
|
||||
} else if let Some(idx) = first_user_grade_idx {
|
||||
// if there are no learning entries, but the user has reviewed the card,
|
||||
// we ignore all entries before the first grade
|
||||
if idx > 0 {
|
||||
entries.drain(..idx);
|
||||
}
|
||||
}
|
||||
|
||||
// Filter out unwanted entries
|
||||
|
@ -384,7 +381,11 @@ pub(crate) fn single_card_revlog_to_items(
|
|||
if items.is_empty() {
|
||||
None
|
||||
} else {
|
||||
Some((items, revlogs_complete, entries.len()))
|
||||
Some(ReviewsForFsrs {
|
||||
fsrs_items: items,
|
||||
revlogs_complete,
|
||||
filtered_revlogs: entries,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -443,8 +444,8 @@ pub(crate) mod tests {
|
|||
training: bool,
|
||||
ignore_before: TimestampMillis,
|
||||
) -> Option<Vec<FSRSItem>> {
|
||||
single_card_revlog_to_items(revlog.to_vec(), NEXT_DAY_AT, training, ignore_before)
|
||||
.map(|i| i.0)
|
||||
reviews_for_fsrs(revlog.to_vec(), NEXT_DAY_AT, training, ignore_before)
|
||||
.map(|i| i.fsrs_items)
|
||||
}
|
||||
|
||||
pub(crate) fn convert(revlog: &[RevlogEntry], training: bool) -> Option<Vec<FSRSItem>> {
|
||||
|
@ -598,6 +599,19 @@ pub(crate) mod tests {
|
|||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn partially_ignored_learning_steps_terminate_training() {
|
||||
let revlogs = &[
|
||||
revlog(RevlogReviewKind::Learning, 10),
|
||||
revlog(RevlogReviewKind::Learning, 8),
|
||||
revlog(RevlogReviewKind::Review, 6),
|
||||
];
|
||||
// | = Ignore before
|
||||
// L = learning step
|
||||
// L | L R
|
||||
assert_eq!(convert_ignore_before(revlogs, true, days_ago_ms(9)), None);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn ignore_before_date_between_learning_steps_when_reviewing() {
|
||||
let revlogs = &[
|
||||
|
@ -614,7 +628,7 @@ pub(crate) mod tests {
|
|||
convert_ignore_before(revlogs, false, days_ago_ms(9))
|
||||
.unwrap()
|
||||
.len(),
|
||||
1
|
||||
2
|
||||
);
|
||||
// | L L R
|
||||
assert_eq!(
|
||||
|
|
|
@ -6,7 +6,7 @@ use fsrs::FSRS;
|
|||
use crate::card::CardType;
|
||||
use crate::prelude::*;
|
||||
use crate::revlog::RevlogEntry;
|
||||
use crate::scheduler::fsrs::memory_state::single_card_revlog_to_item;
|
||||
use crate::scheduler::fsrs::memory_state::fsrs_item_for_memory_state;
|
||||
use crate::scheduler::fsrs::params::ignore_revlogs_before_ms_from_config;
|
||||
use crate::scheduler::timing::is_unix_epoch_timestamp;
|
||||
|
||||
|
@ -144,7 +144,7 @@ impl Collection {
|
|||
|
||||
for entry in revlog {
|
||||
accumulated_revlog.push(entry.clone());
|
||||
let item = single_card_revlog_to_item(
|
||||
let item = fsrs_item_for_memory_state(
|
||||
&fsrs,
|
||||
accumulated_revlog.clone(),
|
||||
next_day_at,
|
||||
|
|
Loading…
Reference in a new issue