mirror of
https://github.com/ankitects/anki.git
synced 2025-09-18 14:02:21 -04:00
When learning steps are missing, start from the SM-2 state
Closes https://github.com/open-spaced-repetition/fsrs-rs/issues/87
This commit is contained in:
parent
257d7bbbbc
commit
72b0c81761
2 changed files with 118 additions and 26 deletions
|
@ -361,7 +361,7 @@ impl Collection {
|
||||||
// and will need its initial memory state to be calculated based on review
|
// and will need its initial memory state to be calculated based on review
|
||||||
// history.
|
// history.
|
||||||
let revlog = self.revlog_for_srs(SearchNode::CardIds(card.id.to_string()))?;
|
let revlog = self.revlog_for_srs(SearchNode::CardIds(card.id.to_string()))?;
|
||||||
let item = single_card_revlog_to_item(revlog, timing.next_day_at);
|
let item = single_card_revlog_to_item(&fsrs, revlog, timing.next_day_at);
|
||||||
card.set_memory_state(&fsrs, item);
|
card.set_memory_state(&fsrs, item);
|
||||||
}
|
}
|
||||||
let days_elapsed = self
|
let days_elapsed = self
|
||||||
|
|
|
@ -5,12 +5,14 @@ use std::collections::HashMap;
|
||||||
|
|
||||||
use anki_proto::scheduler::ComputeMemoryStateResponse;
|
use anki_proto::scheduler::ComputeMemoryStateResponse;
|
||||||
use fsrs::FSRSItem;
|
use fsrs::FSRSItem;
|
||||||
|
use fsrs::MemoryState;
|
||||||
use fsrs::FSRS;
|
use fsrs::FSRS;
|
||||||
use itertools::Itertools;
|
use itertools::Itertools;
|
||||||
|
|
||||||
use crate::card::CardType;
|
use crate::card::CardType;
|
||||||
use crate::prelude::*;
|
use crate::prelude::*;
|
||||||
use crate::revlog::RevlogEntry;
|
use crate::revlog::RevlogEntry;
|
||||||
|
use crate::revlog::RevlogReviewKind;
|
||||||
use crate::scheduler::fsrs::weights::single_card_revlog_to_items;
|
use crate::scheduler::fsrs::weights::single_card_revlog_to_items;
|
||||||
use crate::scheduler::fsrs::weights::Weights;
|
use crate::scheduler::fsrs::weights::Weights;
|
||||||
use crate::scheduler::states::fuzz::with_review_fuzz;
|
use crate::scheduler::states::fuzz::with_review_fuzz;
|
||||||
|
@ -55,9 +57,9 @@ impl Collection {
|
||||||
} else {
|
} else {
|
||||||
None
|
None
|
||||||
};
|
};
|
||||||
let items = fsrs_items_for_memory_state(revlog, timing.next_day_at);
|
|
||||||
let desired_retention = req.as_ref().map(|w| w.desired_retention);
|
|
||||||
let fsrs = FSRS::new(req.as_ref().map(|w| &w.weights[..]))?;
|
let fsrs = FSRS::new(req.as_ref().map(|w| &w.weights[..]))?;
|
||||||
|
let items = fsrs_items_for_memory_state(&fsrs, revlog, timing.next_day_at);
|
||||||
|
let desired_retention = req.as_ref().map(|w| w.desired_retention);
|
||||||
let mut progress = self.new_progress_handler::<ComputeMemoryProgress>();
|
let mut progress = self.new_progress_handler::<ComputeMemoryProgress>();
|
||||||
progress.update(false, |s| s.total_cards = items.len() as u32)?;
|
progress.update(false, |s| s.total_cards = items.len() as u32)?;
|
||||||
for (idx, (card_id, item)) in items.into_iter().enumerate() {
|
for (idx, (card_id, item)) in items.into_iter().enumerate() {
|
||||||
|
@ -65,7 +67,7 @@ impl Collection {
|
||||||
let mut card = self.storage.get_card(card_id)?.or_not_found(card_id)?;
|
let mut card = self.storage.get_card(card_id)?.or_not_found(card_id)?;
|
||||||
let original = card.clone();
|
let original = card.clone();
|
||||||
if let Some(req) = &req {
|
if let Some(req) = &req {
|
||||||
card.set_memory_state(&fsrs, item.clone());
|
card.set_memory_state(&fsrs, item);
|
||||||
card.desired_retention = desired_retention;
|
card.desired_retention = desired_retention;
|
||||||
// if rescheduling
|
// if rescheduling
|
||||||
if let Some(reviews) = &last_reviews {
|
if let Some(reviews) = &last_reviews {
|
||||||
|
@ -128,7 +130,7 @@ impl Collection {
|
||||||
let desired_retention = config.inner.desired_retention;
|
let desired_retention = config.inner.desired_retention;
|
||||||
let fsrs = FSRS::new(Some(&config.inner.fsrs_weights))?;
|
let fsrs = FSRS::new(Some(&config.inner.fsrs_weights))?;
|
||||||
let revlog = self.revlog_for_srs(SearchNode::CardIds(card.id.to_string()))?;
|
let revlog = self.revlog_for_srs(SearchNode::CardIds(card.id.to_string()))?;
|
||||||
let item = single_card_revlog_to_item(revlog, self.timing_today()?.next_day_at);
|
let item = single_card_revlog_to_item(&fsrs, revlog, self.timing_today()?.next_day_at);
|
||||||
card.set_memory_state(&fsrs, item);
|
card.set_memory_state(&fsrs, item);
|
||||||
Ok(ComputeMemoryStateResponse {
|
Ok(ComputeMemoryStateResponse {
|
||||||
state: card.memory_state.map(Into::into),
|
state: card.memory_state.map(Into::into),
|
||||||
|
@ -138,13 +140,18 @@ impl Collection {
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Card {
|
impl Card {
|
||||||
pub(crate) fn set_memory_state(&mut self, fsrs: &FSRS, item: Option<FSRSItem>) {
|
pub(crate) fn set_memory_state(
|
||||||
|
&mut self,
|
||||||
|
fsrs: &FSRS,
|
||||||
|
item: Option<FsrsItemWithStartingState>,
|
||||||
|
) {
|
||||||
self.memory_state = item
|
self.memory_state = item
|
||||||
.map(|i| fsrs.memory_state(i, None))
|
.map(|i| fsrs.memory_state(i.item, i.starting_state))
|
||||||
.or_else(|| {
|
.or_else(|| {
|
||||||
if self.ctype == CardType::New {
|
if self.ctype == CardType::New {
|
||||||
None
|
None
|
||||||
} else {
|
} else {
|
||||||
|
// no valid revlog entries; infer state from current card state
|
||||||
Some(fsrs.memory_state_from_sm2(self.ease_factor(), self.interval as f32))
|
Some(fsrs.memory_state_from_sm2(self.ease_factor(), self.interval as f32))
|
||||||
}
|
}
|
||||||
})
|
})
|
||||||
|
@ -152,12 +159,21 @@ impl Card {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[derive(Debug)]
|
||||||
|
pub(crate) struct FsrsItemWithStartingState {
|
||||||
|
pub item: FSRSItem,
|
||||||
|
/// When revlogs have been truncated, this stores the initial state at first
|
||||||
|
/// review
|
||||||
|
pub starting_state: Option<MemoryState>,
|
||||||
|
}
|
||||||
|
|
||||||
/// When updating memory state, FSRS only requires the last FSRSItem that
|
/// When updating memory state, FSRS only requires the last FSRSItem that
|
||||||
/// contains the full history.
|
/// contains the full history.
|
||||||
pub(crate) fn fsrs_items_for_memory_state(
|
pub(crate) fn fsrs_items_for_memory_state(
|
||||||
|
fsrs: &FSRS,
|
||||||
revlogs: Vec<RevlogEntry>,
|
revlogs: Vec<RevlogEntry>,
|
||||||
next_day_at: TimestampSecs,
|
next_day_at: TimestampSecs,
|
||||||
) -> Vec<(CardId, Option<FSRSItem>)> {
|
) -> Vec<(CardId, Option<FsrsItemWithStartingState>)> {
|
||||||
revlogs
|
revlogs
|
||||||
.into_iter()
|
.into_iter()
|
||||||
.group_by(|r| r.cid)
|
.group_by(|r| r.cid)
|
||||||
|
@ -165,7 +181,7 @@ pub(crate) fn fsrs_items_for_memory_state(
|
||||||
.map(|(card_id, group)| {
|
.map(|(card_id, group)| {
|
||||||
(
|
(
|
||||||
card_id,
|
card_id,
|
||||||
single_card_revlog_to_item(group.collect(), next_day_at),
|
single_card_revlog_to_item(fsrs, group.collect(), next_day_at),
|
||||||
)
|
)
|
||||||
})
|
})
|
||||||
.collect()
|
.collect()
|
||||||
|
@ -190,42 +206,118 @@ fn get_last_reviews(revlogs: &[RevlogEntry]) -> HashMap<CardId, TimestampSecs> {
|
||||||
out
|
out
|
||||||
}
|
}
|
||||||
|
|
||||||
/// When calculating memory state, only the last FSRSItem is required.
|
/// When calculating memory state, only the last FSRSItem is required. If the
|
||||||
|
/// revlog is non-empty and no learning steps have been detected (indicative of
|
||||||
|
/// a truncated revlog), we return the starting state inferred from the first
|
||||||
|
/// revlog entry, so that the first review is not treated as if started from
|
||||||
|
/// scratch.
|
||||||
pub(crate) fn single_card_revlog_to_item(
|
pub(crate) fn single_card_revlog_to_item(
|
||||||
|
fsrs: &FSRS,
|
||||||
entries: Vec<RevlogEntry>,
|
entries: Vec<RevlogEntry>,
|
||||||
next_day_at: TimestampSecs,
|
next_day_at: TimestampSecs,
|
||||||
) -> Option<FSRSItem> {
|
) -> Option<FsrsItemWithStartingState> {
|
||||||
let items = single_card_revlog_to_items(entries, next_day_at, false);
|
let have_learning = entries
|
||||||
items.and_then(|mut i| i.pop())
|
.iter()
|
||||||
|
.any(|e| e.review_kind == RevlogReviewKind::Learning);
|
||||||
|
if have_learning {
|
||||||
|
let items = single_card_revlog_to_items(entries, next_day_at, false);
|
||||||
|
Some(FsrsItemWithStartingState {
|
||||||
|
item: items.unwrap().pop().unwrap(),
|
||||||
|
starting_state: None,
|
||||||
|
})
|
||||||
|
} else if let Some(first_review) = entries.iter().find(|e| e.button_chosen > 0) {
|
||||||
|
let ease_factor = if first_review.ease_factor == 0 {
|
||||||
|
2500
|
||||||
|
} else {
|
||||||
|
first_review.ease_factor
|
||||||
|
};
|
||||||
|
let interval = first_review.interval.max(1);
|
||||||
|
let starting_state =
|
||||||
|
fsrs.memory_state_from_sm2(ease_factor as f32 / 1000.0, interval as f32);
|
||||||
|
let items = single_card_revlog_to_items(entries, next_day_at, false);
|
||||||
|
items.and_then(|mut items| {
|
||||||
|
let mut item = items.pop().unwrap();
|
||||||
|
item.reviews.remove(0);
|
||||||
|
if item.reviews.is_empty() {
|
||||||
|
None
|
||||||
|
} else {
|
||||||
|
Some(FsrsItemWithStartingState {
|
||||||
|
item,
|
||||||
|
starting_state: Some(starting_state),
|
||||||
|
})
|
||||||
|
}
|
||||||
|
})
|
||||||
|
} else {
|
||||||
|
None
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#[cfg(test)]
|
#[cfg(test)]
|
||||||
mod tests {
|
mod tests {
|
||||||
use fsrs::MemoryState;
|
use fsrs::MemoryState;
|
||||||
|
|
||||||
use super::super::weights::tests::fsrs_items;
|
|
||||||
use super::*;
|
use super::*;
|
||||||
|
use crate::card::FsrsMemoryState;
|
||||||
use crate::revlog::RevlogReviewKind;
|
use crate::revlog::RevlogReviewKind;
|
||||||
use crate::scheduler::fsrs::weights::tests::convert;
|
use crate::scheduler::fsrs::weights::tests::convert;
|
||||||
use crate::scheduler::fsrs::weights::tests::review;
|
|
||||||
use crate::scheduler::fsrs::weights::tests::revlog;
|
use crate::scheduler::fsrs::weights::tests::revlog;
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn bypassed_learning_is_handled() {
|
fn bypassed_learning_is_handled() {
|
||||||
// cards without any learning steps due to truncated history still have memory
|
// cards without any learning steps due to truncated history still have memory
|
||||||
// state calculated
|
// state calculated
|
||||||
|
let fsrs = FSRS::new(Some(&[])).unwrap();
|
||||||
|
let item = single_card_revlog_to_item(
|
||||||
|
&fsrs,
|
||||||
|
vec![
|
||||||
|
RevlogEntry {
|
||||||
|
ease_factor: 2500,
|
||||||
|
interval: 100,
|
||||||
|
..revlog(RevlogReviewKind::Review, 100)
|
||||||
|
},
|
||||||
|
revlog(RevlogReviewKind::Review, 1),
|
||||||
|
],
|
||||||
|
TimestampSecs::now(),
|
||||||
|
)
|
||||||
|
.unwrap();
|
||||||
assert_eq!(
|
assert_eq!(
|
||||||
convert(
|
item.starting_state,
|
||||||
&[
|
Some(MemoryState {
|
||||||
RevlogEntry {
|
stability: 100.,
|
||||||
ease_factor: 2500,
|
difficulty: 4.4642878
|
||||||
..revlog(RevlogReviewKind::Manual, 7)
|
})
|
||||||
},
|
);
|
||||||
revlog(RevlogReviewKind::Review, 6),
|
let mut card = Card::default();
|
||||||
],
|
card.set_memory_state(&fsrs, Some(item));
|
||||||
false,
|
assert_eq!(
|
||||||
),
|
card.memory_state,
|
||||||
fsrs_items!([review(0)])
|
Some(FsrsMemoryState {
|
||||||
|
stability: 248.47879,
|
||||||
|
difficulty: 4.468945
|
||||||
|
})
|
||||||
|
);
|
||||||
|
// but if there's only a single revlog entry, we'll fall back on current card
|
||||||
|
// state
|
||||||
|
let item = single_card_revlog_to_item(
|
||||||
|
&fsrs,
|
||||||
|
vec![RevlogEntry {
|
||||||
|
ease_factor: 2500,
|
||||||
|
interval: 100,
|
||||||
|
..revlog(RevlogReviewKind::Review, 100)
|
||||||
|
}],
|
||||||
|
TimestampSecs::now(),
|
||||||
|
);
|
||||||
|
assert!(item.is_none());
|
||||||
|
card.interval = 123;
|
||||||
|
card.ease_factor = 2000;
|
||||||
|
card.ctype = CardType::Review;
|
||||||
|
card.set_memory_state(&fsrs, item);
|
||||||
|
assert_eq!(
|
||||||
|
card.memory_state,
|
||||||
|
Some(FsrsMemoryState {
|
||||||
|
stability: 123.0,
|
||||||
|
difficulty: 6.5147324,
|
||||||
|
})
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue