The approach in #2542 unfortunately introduced a regression, as whilst
it ensured that duplicate keys are removed when downgrading, it no longer
prevented the duplicates from being removed when converting to a legacy
Schema11 object. This resulted in things like backend.get_notetype_legacy()
returning duplicate keys, and could break syncing:
https://forums.ankiweb.net/t/windows-desktop-sync-error/33128
As syncing and schema11 object usage is quite common compared to downgrading,
the extra Value deserialization seemed a bit expensive, so I've switched
back to explicitly removing the problem keys. To ensure we don't forget to
add new keys in the future, I've added some new tests that should alert us
whenever a newly-added key is missing from the reserved list.
Due to the orphan rule, this meant removing our usages of impl ProtoStruct,
or converting them to a trait when they were used commonly.
rslib now directly references anki_proto and anki_i18n, instead of
'pub use'-ing them, and we can put the generated files back in OUT_DIR.
* Skip linting target folder
Contains build files not passing the copyright header check.
* Implicitly clear duplicate keys when serializing
Fixes `originalStockKind` not being cleared from `other`, as it had
mistakenly been added to the field list for `NoteFieldSchema11`.
This PR replaces the existing Python-driven sync server with a new one in Rust.
The new server supports both collection and media syncing, and is compatible
with both the new protocol mentioned below, and older clients. A setting has
been added to the preferences screen to point Anki to a local server, and a
similar setting is likely to come to AnkiMobile soon.
Documentation is available here: <https://docs.ankiweb.net/sync-server.html>
In addition to the new server and refactoring, this PR also makes changes to the
sync protocol. The existing sync protocol places payloads and metadata inside a
multipart POST body, which causes a few headaches:
- Legacy clients build the request in a non-deterministic order, meaning the
entire request needs to be scanned to extract the metadata.
- Reqwest's multipart API directly writes the multipart body, without exposing
the resulting stream to us, making it harder to track the progress of the
transfer. We've been relying on a patched version of reqwest for timeouts,
which is a pain to keep up to date.
To address these issues, the metadata is now sent in a HTTP header, with the
data payload sent directly in the body. Instead of the slower gzip, we now
use zstd. The old timeout handling code has been replaced with a new implementation
that wraps the request and response body streams to track progress, allowing us
to drop the git dependencies for reqwest, hyper-timeout and tokio-io-timeout.
The main other change to the protocol is that one-way syncs no longer need to
downgrade the collection to schema 11 prior to sending.
* Run cargo +nightly fmt
* Latest prost-build includes clippy workaround
* Tweak Rust protobuf imports
- Avoid use of stringify!(), as JetBrains editors get confused by it
- Stop merging all protobuf symbols into a single namespace
* Remove some unnecessary qualifications
Found via IntelliJ lint
* Migrate some asserts to assert_eq/ne
* Remove mention of node_modules exclusion
This no longer seems to be necessary after migrating away from Bazel,
and excluding it means TS/Svelte files can't be edited properly.
(for upgrading users, please see the notes at the bottom)
Bazel brought a lot of nice things to the table, such as rebuilds based on
content changes instead of modification times, caching of build products,
detection of incorrect build rules via a sandbox, and so on. Rewriting the build
in Bazel was also an opportunity to improve on the Makefile-based build we had
prior, which was pretty poor: most dependencies were external or not pinned, and
the build graph was poorly defined and mostly serialized. It was not uncommon
for fresh checkouts to fail due to floating dependencies, or for things to break
when trying to switch to an older commit.
For day-to-day development, I think Bazel served us reasonably well - we could
generally switch between branches while being confident that builds would be
correct and reasonably fast, and not require full rebuilds (except on Windows,
where the lack of a sandbox and the TS rules would cause build breakages when TS
files were renamed/removed).
Bazel achieves that reliability by defining rules for each programming language
that define how source files should be turned into outputs. For the rules to
work with Bazel's sandboxing approach, they often have to reimplement or
partially bypass the standard tools that each programming language provides. The
Rust rules call Rust's compiler directly for example, instead of using Cargo,
and the Python rules extract each PyPi package into a separate folder that gets
added to sys.path.
These separate language rules allow proper declaration of inputs and outputs,
and offer some advantages such as caching of build products and fine-grained
dependency installation. But they also bring some downsides:
- The rules don't always support use-cases/platforms that the standard language
tools do, meaning they need to be patched to be used. I've had to contribute a
number of patches to the Rust, Python and JS rules to unblock various issues.
- The dependencies we use with each language sometimes make assumptions that do
not hold in Bazel, meaning they either need to be pinned or patched, or the
language rules need to be adjusted to accommodate them.
I was hopeful that after the initial setup work, things would be relatively
smooth-sailing. Unfortunately, that has not proved to be the case. Things
frequently broke when dependencies or the language rules were updated, and I
began to get frustrated at the amount of Anki development time I was instead
spending on build system upkeep. It's now about 2 years since switching to
Bazel, and I think it's time to cut losses, and switch to something else that's
a better fit.
The new build system is based on a small build tool called Ninja, and some
custom Rust code in build/. This means that to build Anki, Bazel is no longer
required, but Ninja and Rust need to be installed on your system. Python and
Node toolchains are automatically downloaded like in Bazel.
This new build system should result in faster builds in some cases:
- Because we're using cargo to build now, Rust builds are able to take advantage
of pipelining and incremental debug builds, which we didn't have with Bazel.
It's also easier to override the default linker on Linux/macOS, which can
further improve speeds.
- External Rust crates are now built with opt=1, which improves performance
of debug builds.
- Esbuild is now used to transpile TypeScript, instead of invoking the TypeScript
compiler. This results in faster builds, by deferring typechecking to test/check
time, and by allowing more work to happen in parallel.
As an example of the differences, when testing with the mold linker on Linux,
adding a new message to tags.proto (which triggers a recompile of the bulk of
the Rust and TypeScript code) results in a compile that goes from about 22s on
Bazel to about 7s in the new system. With the standard linker, it's about 9s.
Some other changes of note:
- Our Rust workspace now uses cargo-hakari to ensure all packages agree on
available features, preventing unnecessary rebuilds.
- pylib/anki is now a PEP420 implicit namespace, avoiding the need to merge
source files and generated files into a single folder for running. By telling
VSCode about the extra search path, code completion now works with generated
files without needing to symlink them into the source folder.
- qt/aqt can't use PEP420 as it's difficult to get rid of aqt/__init__.py.
Instead, the generated files are now placed in a separate _aqt package that's
added to the path.
- ts/lib is now exposed as @tslib, so the source code and generated code can be
provided under the same namespace without a merging step.
- MyPy and PyLint are now invoked once for the entire codebase.
- dprint will be used to format TypeScript/json files in the future instead of
the slower prettier (currently turned off to avoid causing conflicts). It can
automatically defer to prettier when formatting Svelte files.
- svelte-check is now used for typechecking our Svelte code, which revealed a
few typing issues that went undetected with the old system.
- The Jest unit tests now work on Windows as well.
If you're upgrading from Bazel, updated usage instructions are in docs/development.md and docs/build.md. A summary of the changes:
- please remove node_modules and .bazel
- install rustup (https://rustup.rs/)
- install rsync if not already installed (on windows, use pacman - see docs/windows.md)
- install Ninja (unzip from https://github.com/ninja-build/ninja/releases/tag/v1.11.1 and
place on your path, or from your distro/homebrew if it's 1.10+)
- update .vscode/settings.json from .vscode.dist
* Add deck-specific limits to DeckNormal
* Add deck-specific limits to schema11
* Add DeckLimitsDialog
* deck_limits_qt6.py needs to be a symlink
* Clear duplicate deck setting keys on downgrade
* Export deck limits when exporting with scheduling
* Revert "deck_limits_qt6.py needs to be a symlink"
This reverts commit 4ee7be1e10.
* Revert "Add DeckLimitsDialog"
This reverts commit eb0e2a62d3.
* Add day limits to DeckNormal
* Add deck and day limits mock to deck options
* Revert "Add deck and day limits mock to deck options"
This reverts commit 0775814989.
* Add Tabs component for daily limits
* Add borders to tabs component
* Revert "Add borders to tabs component"
This reverts commit aaaf553893.
* Implement tabbed limits properly
* Add comment to translations
* Update rslib/src/decks/limits.rs
Co-authored-by: Damien Elmes <dae@users.noreply.github.com>
* Fix camel case in clear_other_duplicates()
* day_limit → current_limit
* Also import day limits
* Remember last used day limits
* Add day limits to schema 11
* Tweak comment (dae)
* Exclude day limit in export (dae)
* Tweak tab wording (dae)
* Update preset limits on preset change
* Explain tabs in tooltip (dae)
* Omit deck and today limits if v2 is enabled
* Preserve deck limit when switching to today limit
The deck name must be constructed by calling associated functions of
NativeDeckName, unless the name is guaranteed to be valid machine
name (like "Default").
NativeDeckName exposes methods to mutate the deck name and return
the human name.
The storage routines take &strs, but those should be slices of
NativeDeckNames to ensure machine form and normalization.
Updating a deck via protobuf is now exposed on the backend, but not
currently on the frontend - I suspect we'll be better off writing
separate routines for the actions we need instead, and we get a better
undo description for free.
This is currently causing an ugly redraw in the browse screen, which
will need fixing.
So, this is fun. Apparently "DeckId" is considered preferable to the
"DeckID" were were using until now, and the latest clippy will start
warning about it. We could of course disable the warning, but probably
better to bite the bullet and switch to the naming that's generally
considered best.