- don't send server graves graves back on the next sync
- make sure we update usns of models/tags/decks as well on upload
- don't die when updating decks after current deck deleted
- report counts when sanity check fails
- drop lrnCount; rename lrnRepCount to lrnCount
- on card fetch, decr count by card.left
- drop cardCounts(), rename repCounts() to just counts()
- fix lrn count bugs
Because JSON doesn't support 64 bit numbers, we need to either convert the 64
bit numbers to a string during transport, or store the ids as a string. At
base 91 a 64 bit number only takes an extra two bytes, and it means we can
dump DB results directly into JSON without having to apply any transformation.
Instead of having required and unique flags for every field, enforce both
requirements on the first field, and neither on the rest. This mirrors the
subject/body format people are used to in note-taking apps. The subject
defines the object being learnt, and the remaining fields represent properties
of that object.
In the past, duplicate checking served two purposes: it quickly notified the
user that they're entering the same fact twice, and it notified the user if
they'd accidentally mistyped a secondary field. The former behaviour is
important for avoiding wasted effort, and so it should be done in real time.
The latter behaviour is not essential however - a typo is not wasted effort,
and it could be fixed in a periodic 'find duplicates' function. Given that
some users ended up with sluggish decks due to the overhead a large number of
facts * a large number of unique fields caused, this seems like a change for
the better.
This also means Anki will let you add notes as long as as the first field has
been filled out. Again, this is not a big deal: Anki is still checking to make
sure one or more cards will be generated, and the user can easily add any
missing fields later.
As a bonus, this change simplifies field configuration somewhat. As the card
layout and field dialogs are a popular point of confusion, the more they can
be simplified, the better.
The full sync threshold was a hack to ensure we synced the deck in a
memory-efficient way if there was a lot of data to send. The problem is that
it's not easy for the user to predict how many changes there are, and so it
might come as a surprise to them when a sync suddenly switches to a full sync.
In order to be able to send changes in chunks rather than all at once, some
changes had to be made:
- Clients now set usn=-1 when they modify an object, which allows us to
distinguish between objects that have been modified on the server, and ones
that have been modified on the client. If we don't do this, we would have to
buffer the local changes in a temporary location before adding the server
changes.
- Before a client sends the objects to the server, it changes the usn to
maxUsn both in the payload and the local storage.
- We do deletions at the start
- To determine which card or fact is newer, we have to fetch the modification
time of the local version. We do this in batches rather than try to load the
entire list in memory.
Rather than showing the user how many cards are in the learning queue, we want
to be able to show them the number of reps they have to do to clear the queue,
so they can better estimate the required time. Before we were counting up with
the grade column, but this means we can't quickly sum up the number of reps
left. So we invert it, and count down instead.
I also dropped the 'first time bonus' for now. If there's enough demand for
it, it can be added back by using the flags column, instead of a dedicated
cycles column.
Use a more conservative 40MB for systems with a smaller amount of memory.
Ideally we should bump this up if we detect the running system has a decent
amount of memory.
because group deletions are likely to be a semi-common operation (esp. for new users trying out shared material), deleting groups will no longer cause a full sync. in order to avoid syncing issues, we now allow cards/facts/etc to point to an invalid group, and in that case, we just treat them like they're in the default group
Decks now have an "update sequence number". All objects also have a USN, which
is set to the deck USN each time they are modified. When syncing, each side
sends any objects with a USN >= clientUSN. When objects are copied via sync,
they have their USNs bumped to the current serverUSN. After a sync, the USN on
both sides is set to serverUSN + 1.
This solves the failing three way test, ensures we receive all changes
regardless of clock drift, and as the revlog also has a USN now, ensures that
old revlog entries are imported properly too.
Objects retain a separate modification time, which is used for conflict
resolution, deck subscriptions/importing, and info for the user.
Note that if the clock is too far off, it will still cause confusion for
users, as the due counts may be different depending on the time. For this
reason it's probably a good idea to keep a limit on how far the clock can
deviate.
We still keep track of the last sync time, but only so we can determine if the
schema has changed since the last sync.
The media code needs to be updated to use USNs too.
Ported the sync code to the latest libanki structure. Key points:
No summary:
The old style got each side to fetch ids+mod times and required the client to
diff them and then request or bundle up the appropriate objects. Instead, we now
get each side to send all changed objects, and it's the responsibility of the
other side to decide what needs to be merged and what needs to be discarded.
This allows us to skip a separate summary step, which saves scanning tables
twice, and allows us to reduce server requests from 4 to 3.
Schema changes:
Certain operations that are difficult to merge (such as changing the number of
fields in a model, or deleting models or groups) result in a full sync. The
user is warned about it in the GUI before such schema-changing operations
execute.
Sync size:
For now, we don't try to deal with large incremental syncs. Because the cards,
facts and revlog can be large in memory (hundreds of megabytes in some cases),
they would have to be chunked for the benefit of devices with a low amount of
memory.
Currently findChanges() uses the full fact/card objects which we're planning to
send to the server. It could be rewritten to fetch a summary (just the id, mod
& rep columns) which would save some memory, and then compare against blocks
of a few hundred remote objects at a time. However, it's a bit more
complicated than that:
- If the local summary is huge it could exceed memory limits. Without a local
summary we'd have to query the db for each record, which could be a lot
slower.
- We currently accumulate a list of remote records we need to add locally.
This list also has the potential to get too big. We would need to
periodically commit the changes as we accumulate them.
- Merging a large amount of changes is also potentially slow on mobile
devices.
Given the fact that certain schema-changing operations require a full sync
anyway, I think it's probably best to concentrate on a chunked full sync for
now instead, as provided the user syncs periodically it should not be easy to
hit the full sync limits except after bulk editing operations.
Chunked partial syncing should be possible to add in the future without any
changes to the deck format.
Still to do:
- deck conf merging
- full syncing
- new http proxy