// Copyright: Ankitects Pty Ltd and contributors // License: GNU AGPL, version 3 or later; http://www.gnu.org/licenses/agpl.html use crate::backend_proto as pb; pub use crate::backend_proto::{ deck_kind::Kind as DeckKind, Deck as DeckProto, DeckCommon, DeckKind as DeckKindProto, FilteredDeck, FilteredSearchOrder, FilteredSearchTerm, NormalDeck, }; use crate::{ card::CardID, collection::Collection, define_newtype, err::{AnkiError, Result}, text::normalize_to_nfc, timestamp::TimestampSecs, types::Usn, }; mod counts; mod schema11; mod tree; pub(crate) use counts::DueCounts; pub use schema11::DeckSchema11; use std::{borrow::Cow, sync::Arc}; define_newtype!(DeckID, i64); #[derive(Debug)] pub struct Deck { pub id: DeckID, pub name: String, pub mtime_secs: TimestampSecs, pub usn: Usn, pub common: DeckCommon, pub kind: DeckKind, } impl Deck { pub fn new_normal() -> Deck { let mut norm = NormalDeck::default(); norm.config_id = 1; Deck { id: DeckID(0), name: "".into(), mtime_secs: TimestampSecs(0), usn: Usn(0), common: DeckCommon::default(), kind: DeckKind::Normal(norm), } } pub fn new_filtered() -> Deck { let mut filt = FilteredDeck::default(); filt.search_terms.push(FilteredSearchTerm { search: "".into(), limit: 100, order: 0, }); filt.preview_delay = 10; filt.reschedule = true; Deck { id: DeckID(0), name: "".into(), mtime_secs: TimestampSecs(0), usn: Usn(0), common: DeckCommon::default(), kind: DeckKind::Filtered(filt), } } } impl Deck { pub(crate) fn is_filtered(&self) -> bool { matches!(self.kind, DeckKind::Filtered(_)) } pub(crate) fn prepare_for_update(&mut self) { // fixme - we currently only do this when converting from human; should be done in pub methods instead // if self.name.contains(invalid_char_for_deck_component) { // self.name = self.name.replace(invalid_char_for_deck_component, ""); // } // ensure_string_in_nfc(&mut self.name); } // fixme: unify with prepare for update pub(crate) fn set_modified(&mut self, usn: Usn) { self.mtime_secs = TimestampSecs::now(); self.usn = usn; } /// Return the studied counts if studied today. /// May be negative if user has extended limits. pub(crate) fn new_rev_counts(&self, today: u32) -> (i32, i32) { if self.common.last_day_studied == today { (self.common.new_studied, self.common.review_studied) } else { (0, 0) } } } // fixme: need to bump usn on upgrade if we rename fn invalid_char_for_deck_component(c: char) -> bool { c.is_ascii_control() || c == '"' } fn normalized_deck_name_component(comp: &str) -> Cow { let mut out = normalize_to_nfc(comp); if out.contains(invalid_char_for_deck_component) { out = out.replace(invalid_char_for_deck_component, "").into(); } let trimmed = out.trim(); if trimmed.is_empty() { "blank".into() } else if trimmed.len() != out.len() { // fixme: trimming leading/trailing spaces may break old clients if we don't bump mod trimmed.to_string().into() } else { out } } pub(crate) fn human_deck_name_to_native(name: &str) -> String { let mut out = String::with_capacity(name.len()); for comp in name.split("::") { out.push_str(&normalized_deck_name_component(comp)); out.push('\x1f'); } out.trim_end_matches('\x1f').into() } impl Collection { // fixme: this cache may belong in CardGenContext? pub(crate) fn get_deck(&mut self, did: DeckID) -> Result>> { if let Some(deck) = self.state.deck_cache.get(&did) { return Ok(Some(deck.clone())); } if let Some(deck) = self.storage.get_deck(did)? { let deck = Arc::new(deck); self.state.deck_cache.insert(did, deck.clone()); Ok(Some(deck)) } else { Ok(None) } } } impl From for DeckProto { fn from(d: Deck) -> Self { DeckProto { id: d.id.0, name: d.name, mtime_secs: d.mtime_secs.0 as u32, usn: d.usn.0, common: Some(d.common), kind: Some(d.kind.into()), } } } impl From for pb::deck::Kind { fn from(k: DeckKind) -> Self { match k { DeckKind::Normal(n) => pb::deck::Kind::Normal(n), DeckKind::Filtered(f) => pb::deck::Kind::Filtered(f), } } } fn immediate_parent_name(machine_name: &str) -> Option<&str> { machine_name.rsplitn(2, '\x1f').nth(1) } impl Collection { pub(crate) fn add_or_update_deck(&mut self, deck: &mut Deck, preserve_usn: bool) -> Result<()> { // fixme: vet cache clearing self.state.deck_cache.clear(); self.transact(None, |col| { let usn = col.usn()?; deck.prepare_for_update(); // fixme: bail assert!(!deck.name.contains("::")); // fixme: check deck name is not duplicate // handle blank deck name, etc if !preserve_usn { deck.set_modified(usn); } if deck.id.0 == 0 { col.match_or_create_parents(deck)?; col.storage.add_deck(deck) } else { if let Some(existing_deck) = col.storage.get_deck(deck.id)? { if existing_deck.name != deck.name { return col.update_renamed_deck(existing_deck, deck, usn); } } else { // fixme: this should only happen in the syncing case, and we should // ensure there are no missing parents at the end of the sync } col.storage.update_deck(deck) } }) } pub(crate) fn recover_missing_deck(&mut self, _did: DeckID) -> Result<()> { // todo Ok(()) } pub fn get_or_create_normal_deck(&mut self, human_name: &str) -> Result { let native_name = human_deck_name_to_native(human_name); if let Some(did) = self.storage.get_deck_id(&native_name)? { self.storage.get_deck(did).map(|opt| opt.unwrap()) } else { let mut deck = Deck::new_normal(); deck.name = native_name; self.add_or_update_deck(&mut deck, false)?; Ok(deck) } } fn update_renamed_deck(&mut self, existing: Deck, updated: &mut Deck, usn: Usn) -> Result<()> { // new name should not conflict with a different deck if let Some(other_did) = self.storage.get_deck_id(&updated.name)? { if other_did != updated.id { // fixme: this could break when syncing return Err(AnkiError::Existing); } } self.match_or_create_parents(updated)?; self.storage.update_deck(updated)?; self.rename_child_decks(&existing, &updated.name, usn) } // fixme: make sure this handles foo::bar and FOO::baz fn rename_child_decks(&mut self, old: &Deck, new_name: &str, usn: Usn) -> Result<()> { let children = self.storage.child_decks(old)?; let old_component_count = old.name.matches('\x1f').count() + 1; for mut child in children { let child_components: Vec<_> = child.name.split('\x1f').collect(); let child_only = &child_components[old_component_count..]; let new_name = format!("{}\x1f{}", new_name, child_only.join("\x1f")); child.name = new_name; child.set_modified(usn); self.storage.update_deck(&child)?; } Ok(()) } /// Add a single, normal deck with the provided name for a child deck. /// Caller must have done necessarily validation on name. fn add_parent_deck(&self, machine_name: &str) -> Result<()> { let mut deck = Deck::new_normal(); deck.name = machine_name.into(); // fixme: undo self.storage.add_deck(&mut deck) } /// If parent deck(s) exist, rewrite name to match their case. /// If they don't exist, create them. /// Returns an error if a DB operation fails, or if the first existing parent is a filtered deck. fn match_or_create_parents(&mut self, deck: &mut Deck) -> Result<()> { let child_split: Vec<_> = deck.name.split('\x1f').collect(); if let Some(parent_deck) = self.first_existing_parent(&deck.name, 0)? { if parent_deck.is_filtered() { return Err(AnkiError::DeckIsFiltered); } let parent_count = parent_deck.name.matches('\x1f').count() + 1; let need_create = parent_count != child_split.len() - 1; deck.name = format!( "{}\x1f{}", parent_deck.name, &child_split[parent_count..].join("\x1f") ); if need_create { self.create_missing_parents(&deck.name)?; } Ok(()) } else if child_split.len() == 1 { // no parents required Ok(()) } else { // no existing parents self.create_missing_parents(&deck.name) } } fn create_missing_parents(&self, mut machine_name: &str) -> Result<()> { while let Some(parent_name) = immediate_parent_name(machine_name) { if self.storage.get_deck_id(parent_name)?.is_none() { self.add_parent_deck(parent_name)?; } machine_name = parent_name; } Ok(()) } fn first_existing_parent( &self, machine_name: &str, recursion_level: usize, ) -> Result> { if recursion_level > 10 { return Err(AnkiError::invalid_input("deck nesting level too deep")); } if let Some(parent_name) = immediate_parent_name(machine_name) { if let Some(parent_did) = self.storage.get_deck_id(parent_name)? { self.storage.get_deck(parent_did) } else { self.first_existing_parent(parent_name, recursion_level + 1) } } else { Ok(None) } } /// Get a deck based on its human name. If you have a machine name, /// use the method in storage instead. pub(crate) fn get_deck_id(&self, human_name: &str) -> Result> { let machine_name = human_deck_name_to_native(&human_name); self.storage.get_deck_id(&machine_name) } pub fn remove_deck_and_child_decks(&mut self, did: DeckID) -> Result<()> { self.transact(None, |col| { let usn = col.usn()?; if let Some(deck) = col.storage.get_deck(did)? { let child_decks = col.storage.child_decks(&deck)?; // top level col.remove_single_deck(&deck, usn)?; // remove children for deck in child_decks { col.remove_single_deck(&deck, usn)?; } } Ok(()) }) } pub(crate) fn remove_single_deck(&mut self, deck: &Deck, usn: Usn) -> Result<()> { // fixme: undo match deck.kind { DeckKind::Normal(_) => self.delete_all_cards_in_normal_deck(deck.id)?, DeckKind::Filtered(_) => self.return_all_cards_in_filtered_deck(deck.id)?, } self.storage.remove_deck(deck.id)?; self.storage.add_deck_grave(deck.id, usn) } fn delete_all_cards_in_normal_deck(&mut self, did: DeckID) -> Result<()> { let cids = self.storage.all_cards_in_single_deck(did)?; self.remove_cards_inner(&cids) } fn return_all_cards_in_filtered_deck(&mut self, did: DeckID) -> Result<()> { let cids = self.storage.all_cards_in_single_deck(did)?; self.return_cards_to_home_deck(&cids) } fn return_cards_to_home_deck(&mut self, cids: &[CardID]) -> Result<()> { let sched = self.sched_ver(); for cid in cids { if let Some(mut card) = self.storage.get_card(*cid)? { // fixme: undo card.return_home(sched); self.storage.update_card(&card)?; } } Ok(()) } } #[cfg(test)] mod test { use super::{human_deck_name_to_native, immediate_parent_name}; use crate::{ collection::{open_test_collection, Collection}, err::Result, }; fn sorted_names(col: &Collection) -> Vec { col.storage .get_all_deck_names() .unwrap() .into_iter() .map(|d| d.1) .collect() } #[test] fn parent() { assert_eq!(immediate_parent_name("foo"), None); assert_eq!(immediate_parent_name("foo\x1fbar"), Some("foo")); assert_eq!( immediate_parent_name("foo\x1fbar\x1fbaz"), Some("foo\x1fbar") ); } #[test] fn from_human() { assert_eq!(&human_deck_name_to_native("foo"), "foo"); assert_eq!(&human_deck_name_to_native("foo::bar"), "foo\x1fbar"); assert_eq!(&human_deck_name_to_native("fo\x1fo::ba\nr"), "foo\x1fbar"); assert_eq!( &human_deck_name_to_native("foo::::baz"), "foo\x1fblank\x1fbaz" ); } #[test] fn adding_updating() -> Result<()> { let mut col = open_test_collection(); let deck1 = col.get_or_create_normal_deck("foo")?; let deck2 = col.get_or_create_normal_deck("FOO")?; assert_eq!(deck1.id, deck2.id); assert_eq!(sorted_names(&col), vec!["Default", "foo"]); // missing parents should be automatically created, and case should match // existing parents let _deck3 = col.get_or_create_normal_deck("FOO::BAR::BAZ")?; assert_eq!( sorted_names(&col), vec!["Default", "foo", "foo::BAR", "foo::BAR::BAZ"] ); Ok(()) } #[test] fn renaming() -> Result<()> { let mut col = open_test_collection(); let _ = col.get_or_create_normal_deck("foo::bar::baz")?; let mut top_deck = col.get_or_create_normal_deck("foo")?; top_deck.name = "other".into(); col.add_or_update_deck(&mut top_deck, false)?; assert_eq!( sorted_names(&col), vec!["Default", "other", "other::bar", "other::bar::baz"] ); Ok(()) } }