mirror of
https://github.com/ankitects/anki.git
synced 2025-09-23 08:22:24 -04:00
255 lines
9.5 KiB
Rust
255 lines
9.5 KiB
Rust
// Copyright: Ankitects Pty Ltd and contributors
|
|
// License: GNU AGPL, version 3 or later; http://www.gnu.org/licenses/agpl.html
|
|
|
|
use std::collections::HashMap;
|
|
|
|
use anki_proto::scheduler::ComputeMemoryStateResponse;
|
|
use fsrs::FSRSItem;
|
|
use fsrs::FSRS;
|
|
use itertools::Itertools;
|
|
|
|
use crate::card::CardType;
|
|
use crate::prelude::*;
|
|
use crate::revlog::RevlogEntry;
|
|
use crate::scheduler::fsrs::weights::single_card_revlog_to_items;
|
|
use crate::scheduler::fsrs::weights::Weights;
|
|
use crate::scheduler::states::fuzz::with_review_fuzz;
|
|
use crate::search::JoinSearches;
|
|
use crate::search::Negated;
|
|
use crate::search::SearchNode;
|
|
use crate::search::StateKind;
|
|
|
|
#[derive(Debug, Clone, Copy, Default)]
|
|
pub struct ComputeMemoryProgress {
|
|
pub current_cards: u32,
|
|
pub total_cards: u32,
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub(crate) struct UpdateMemoryStateRequest {
|
|
pub weights: Weights,
|
|
pub desired_retention: f32,
|
|
pub max_interval: u32,
|
|
pub reschedule: bool,
|
|
}
|
|
|
|
impl Collection {
|
|
/// For each provided set of weights, locate cards with the provided search,
|
|
/// and update their memory state.
|
|
/// Should be called inside a transaction.
|
|
/// If Weights are None, it means the user disabled FSRS, and the existing
|
|
/// memory state should be removed.
|
|
pub(crate) fn update_memory_state(
|
|
&mut self,
|
|
entries: Vec<(Option<UpdateMemoryStateRequest>, Vec<SearchNode>)>,
|
|
) -> Result<()> {
|
|
let timing = self.timing_today()?;
|
|
let usn = self.usn()?;
|
|
for (req, search) in entries {
|
|
let search = SearchBuilder::any(search.into_iter())
|
|
.and(SearchNode::State(StateKind::New).negated());
|
|
let revlog = self.revlog_for_srs(search)?;
|
|
let reschedule = req.as_ref().map(|e| e.reschedule).unwrap_or_default();
|
|
let last_reviews = if reschedule {
|
|
Some(get_last_reviews(&revlog))
|
|
} else {
|
|
None
|
|
};
|
|
let items = fsrs_items_for_memory_state(revlog, timing.next_day_at);
|
|
let desired_retention = req.as_ref().map(|w| w.desired_retention);
|
|
let fsrs = FSRS::new(req.as_ref().map(|w| &w.weights[..]))?;
|
|
let mut progress = self.new_progress_handler::<ComputeMemoryProgress>();
|
|
progress.update(false, |s| s.total_cards = items.len() as u32)?;
|
|
for (idx, (card_id, item)) in items.into_iter().enumerate() {
|
|
progress.update(true, |state| state.current_cards = idx as u32 + 1)?;
|
|
let mut card = self.storage.get_card(card_id)?.or_not_found(card_id)?;
|
|
let original = card.clone();
|
|
if let Some(req) = &req {
|
|
card.set_memory_state(&fsrs, item.clone());
|
|
card.desired_retention = desired_retention;
|
|
// if rescheduling
|
|
if let Some(reviews) = &last_reviews {
|
|
// and we have a last review time for the card
|
|
if let Some(last_review) = reviews.get(&card.id) {
|
|
let days_elapsed =
|
|
timing.next_day_at.elapsed_days_since(*last_review) as i32;
|
|
// and the card's not new
|
|
if let Some(state) = &card.memory_state {
|
|
// or in (re)learning
|
|
if card.ctype == CardType::Review {
|
|
// reschedule it
|
|
let original_interval = card.interval;
|
|
let interval = fsrs.next_interval(
|
|
Some(state.stability),
|
|
card.desired_retention.unwrap(),
|
|
0,
|
|
) as f32;
|
|
card.interval = with_review_fuzz(
|
|
card.get_fuzz_factor(),
|
|
interval,
|
|
1,
|
|
req.max_interval,
|
|
);
|
|
let due = if card.original_due != 0 {
|
|
&mut card.original_due
|
|
} else {
|
|
&mut card.due
|
|
};
|
|
*due = (timing.days_elapsed as i32) - days_elapsed
|
|
+ card.interval as i32;
|
|
self.log_manually_scheduled_review(
|
|
&card,
|
|
original_interval,
|
|
usn,
|
|
)?;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
card.memory_state = None;
|
|
card.desired_retention = None;
|
|
}
|
|
self.update_card_inner(&mut card, original, usn)?;
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
pub fn compute_memory_state(&mut self, card_id: CardId) -> Result<ComputeMemoryStateResponse> {
|
|
let mut card = self.storage.get_card(card_id)?.or_not_found(card_id)?;
|
|
let deck_id = card.original_deck_id.or(card.deck_id);
|
|
let deck = self.get_deck(deck_id)?.or_not_found(card.deck_id)?;
|
|
let conf_id = DeckConfigId(deck.normal()?.config_id);
|
|
let config = self
|
|
.storage
|
|
.get_deck_config(conf_id)?
|
|
.or_not_found(conf_id)?;
|
|
let desired_retention = config.inner.desired_retention;
|
|
let fsrs = FSRS::new(Some(&config.inner.fsrs_weights))?;
|
|
let revlog = self.revlog_for_srs(SearchNode::CardIds(card.id.to_string()))?;
|
|
let item = single_card_revlog_to_item(revlog, self.timing_today()?.next_day_at);
|
|
card.set_memory_state(&fsrs, item);
|
|
Ok(ComputeMemoryStateResponse {
|
|
state: card.memory_state.map(Into::into),
|
|
desired_retention,
|
|
})
|
|
}
|
|
}
|
|
|
|
impl Card {
|
|
pub(crate) fn set_memory_state(&mut self, fsrs: &FSRS, item: Option<FSRSItem>) {
|
|
self.memory_state = item
|
|
.map(|i| fsrs.memory_state(i))
|
|
.or_else(|| {
|
|
if self.ctype == CardType::New {
|
|
None
|
|
} else {
|
|
Some(fsrs.memory_state_from_sm2(self.ease_factor(), self.interval as f32))
|
|
}
|
|
})
|
|
.map(Into::into);
|
|
}
|
|
}
|
|
|
|
/// When updating memory state, FSRS only requires the last FSRSItem that
|
|
/// contains the full history.
|
|
pub(crate) fn fsrs_items_for_memory_state(
|
|
revlogs: Vec<RevlogEntry>,
|
|
next_day_at: TimestampSecs,
|
|
) -> Vec<(CardId, Option<FSRSItem>)> {
|
|
revlogs
|
|
.into_iter()
|
|
.group_by(|r| r.cid)
|
|
.into_iter()
|
|
.map(|(card_id, group)| {
|
|
(
|
|
card_id,
|
|
single_card_revlog_to_item(group.collect(), next_day_at),
|
|
)
|
|
})
|
|
.collect()
|
|
}
|
|
|
|
/// Return a map of cards to the last time they were reviewed.
|
|
fn get_last_reviews(revlogs: &[RevlogEntry]) -> HashMap<CardId, TimestampSecs> {
|
|
let mut out = HashMap::new();
|
|
revlogs
|
|
.iter()
|
|
.group_by(|r| r.cid)
|
|
.into_iter()
|
|
.for_each(|(card_id, group)| {
|
|
let mut last_ts = TimestampSecs::zero();
|
|
for entry in group.into_iter().filter(|r| r.button_chosen >= 1) {
|
|
last_ts = entry.id.as_secs();
|
|
}
|
|
if last_ts != TimestampSecs::zero() {
|
|
out.insert(card_id, last_ts);
|
|
}
|
|
});
|
|
out
|
|
}
|
|
|
|
/// When calculating memory state, only the last FSRSItem is required.
|
|
pub(crate) fn single_card_revlog_to_item(
|
|
entries: Vec<RevlogEntry>,
|
|
next_day_at: TimestampSecs,
|
|
) -> Option<FSRSItem> {
|
|
let items = single_card_revlog_to_items(entries, next_day_at, false);
|
|
items.and_then(|mut i| i.pop())
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use fsrs::MemoryState;
|
|
|
|
use super::super::weights::tests::fsrs_items;
|
|
use super::*;
|
|
use crate::revlog::RevlogReviewKind;
|
|
use crate::scheduler::fsrs::weights::tests::convert;
|
|
use crate::scheduler::fsrs::weights::tests::review;
|
|
use crate::scheduler::fsrs::weights::tests::revlog;
|
|
|
|
#[test]
|
|
fn bypassed_learning_is_handled() {
|
|
// cards without any learning steps due to truncated history still have memory
|
|
// state calculated
|
|
assert_eq!(
|
|
convert(
|
|
&[
|
|
RevlogEntry {
|
|
ease_factor: 2500,
|
|
..revlog(RevlogReviewKind::Manual, 7)
|
|
},
|
|
revlog(RevlogReviewKind::Review, 6),
|
|
],
|
|
false,
|
|
),
|
|
fsrs_items!([review(0)])
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn zero_history_is_handled() {
|
|
// when the history is empty, no items are produced
|
|
assert_eq!(convert(&[], false), None);
|
|
// but memory state should still be inferred, by using the card's current state
|
|
let mut card = Card {
|
|
ctype: CardType::Review,
|
|
interval: 100,
|
|
ease_factor: 1300,
|
|
..Default::default()
|
|
};
|
|
card.set_memory_state(&FSRS::new(Some(&[])).unwrap(), None);
|
|
assert_eq!(
|
|
card.memory_state,
|
|
Some(
|
|
MemoryState {
|
|
stability: 100.0,
|
|
difficulty: 9.692858
|
|
}
|
|
.into()
|
|
)
|
|
);
|
|
}
|
|
}
|