mirror of
https://github.com/ankitects/anki.git
synced 2026-01-16 23:39:01 -05:00
* Feat/FSRS-5 * adapt the SimulatorConfig of FSRS-5 * update parameters from FSRS-4.5 * udpate to FSRS-rs v1.1.0 * ./ninja fix:minilints * pass ci * update cargo-deny to 0.14.24 * udpate to FSRS-rs v1.1.1 * update to fsrs-rs v1.1.2
86 lines
3.1 KiB
Rust
86 lines
3.1 KiB
Rust
// Copyright: Ankitects Pty Ltd and contributors
|
|
// License: GNU AGPL, version 3 or later; http://www.gnu.org/licenses/agpl.html
|
|
|
|
use anki_proto::scheduler::SimulateFsrsReviewRequest;
|
|
use anki_proto::scheduler::SimulateFsrsReviewResponse;
|
|
use fsrs::simulate;
|
|
use fsrs::SimulatorConfig;
|
|
use itertools::Itertools;
|
|
|
|
use crate::prelude::*;
|
|
use crate::search::SortMode;
|
|
|
|
impl Collection {
|
|
pub fn simulate_review(
|
|
&mut self,
|
|
req: SimulateFsrsReviewRequest,
|
|
) -> Result<SimulateFsrsReviewResponse> {
|
|
let guard = self.search_cards_into_table(&req.search, SortMode::NoOrder)?;
|
|
let revlogs = guard
|
|
.col
|
|
.storage
|
|
.get_revlog_entries_for_searched_cards_in_card_order()?;
|
|
let cards = guard.col.storage.all_searched_cards()?;
|
|
drop(guard);
|
|
let p = self.get_optimal_retention_parameters(revlogs)?;
|
|
let config = SimulatorConfig {
|
|
deck_size: req.deck_size as usize,
|
|
learn_span: req.days_to_simulate as usize,
|
|
max_cost_perday: f32::MAX,
|
|
max_ivl: req.max_interval as f32,
|
|
learn_costs: p.learn_costs,
|
|
review_costs: p.review_costs,
|
|
first_rating_prob: p.first_rating_prob,
|
|
review_rating_prob: p.review_rating_prob,
|
|
first_rating_offsets: p.first_rating_offsets,
|
|
first_session_lens: p.first_session_lens,
|
|
forget_rating_offset: p.forget_rating_offset,
|
|
forget_session_len: p.forget_session_len,
|
|
loss_aversion: 1.0,
|
|
learn_limit: req.new_limit as usize,
|
|
review_limit: req.review_limit as usize,
|
|
};
|
|
let days_elapsed = self.timing_today().unwrap().days_elapsed as i32;
|
|
let (
|
|
accumulated_knowledge_acquisition,
|
|
daily_review_count,
|
|
daily_new_count,
|
|
daily_time_cost,
|
|
) = simulate(
|
|
&config,
|
|
&req.weights,
|
|
req.desired_retention,
|
|
None,
|
|
Some(
|
|
cards
|
|
.into_iter()
|
|
.filter_map(|c| Card::convert(c, days_elapsed))
|
|
.collect_vec(),
|
|
),
|
|
);
|
|
Ok(SimulateFsrsReviewResponse {
|
|
accumulated_knowledge_acquisition: accumulated_knowledge_acquisition.to_vec(),
|
|
daily_review_count: daily_review_count.iter().map(|x| *x as u32).collect_vec(),
|
|
daily_new_count: daily_new_count.iter().map(|x| *x as u32).collect_vec(),
|
|
daily_time_cost: daily_time_cost.to_vec(),
|
|
})
|
|
}
|
|
}
|
|
|
|
impl Card {
|
|
fn convert(card: Card, days_elapsed: i32) -> Option<fsrs::Card> {
|
|
match card.memory_state {
|
|
Some(state) => {
|
|
let due = card.original_or_current_due();
|
|
let relative_due = due - days_elapsed;
|
|
Some(fsrs::Card {
|
|
difficulty: state.difficulty,
|
|
stability: state.stability,
|
|
last_date: (relative_due - card.interval as i32) as f32,
|
|
due: relative_due as f32,
|
|
})
|
|
}
|
|
None => None,
|
|
}
|
|
}
|
|
}
|