Anki/rslib/src/scheduler/service/mod.rs
Luc Mcgrady 55ecbc1125
Feat/Health check (#4047)
* Message on low log loss

* make console.log permanent

* Added: Health check option

* disable button

* change health check conditions

* i18n

* ./check

* Apply suggestions from code review

Co-authored-by: user1823 <92206575+user1823@users.noreply.github.com>

* delete shadowed fsrs

* Update ts/routes/deck-options/FsrsOptions.svelte

Co-authored-by: llama <gh@siid.sh>

* Update ftl/core/deck-config.ftl

Co-authored-by: user1823 <92206575+user1823@users.noreply.github.com>

* anon's suggestions

* snake_case

* capital slow

* make global

* on by default

* Adjusted loss values

* Show message on pass

* ./check

* ComputeParamsRequest

* update coefficients

* update thresholds

* fix thresholds

* Apply suggestions from code review

---------

Co-authored-by: user1823 <92206575+user1823@users.noreply.github.com>
Co-authored-by: llama <gh@siid.sh>
Co-authored-by: Damien Elmes <dae@users.noreply.github.com>
2025-06-06 12:43:33 +07:00

428 lines
14 KiB
Rust

// Copyright: Ankitects Pty Ltd and contributors
// License: GNU AGPL, version 3 or later; http://www.gnu.org/licenses/agpl.html
mod answering;
mod states;
use anki_proto::cards;
use anki_proto::generic;
use anki_proto::scheduler;
use anki_proto::scheduler::ComputeFsrsParamsResponse;
use anki_proto::scheduler::ComputeMemoryStateResponse;
use anki_proto::scheduler::ComputeOptimalRetentionResponse;
use anki_proto::scheduler::FsrsBenchmarkResponse;
use anki_proto::scheduler::FuzzDeltaRequest;
use anki_proto::scheduler::FuzzDeltaResponse;
use anki_proto::scheduler::GetOptimalRetentionParametersResponse;
use anki_proto::scheduler::SimulateFsrsReviewRequest;
use anki_proto::scheduler::SimulateFsrsReviewResponse;
use fsrs::ComputeParametersInput;
use fsrs::FSRSItem;
use fsrs::FSRSReview;
use fsrs::FSRS;
use crate::backend::Backend;
use crate::prelude::*;
use crate::scheduler::fsrs::params::ComputeParamsRequest;
use crate::scheduler::new::NewCardDueOrder;
use crate::scheduler::states::CardState;
use crate::scheduler::states::SchedulingStates;
use crate::search::SortMode;
use crate::stats::studied_today;
impl crate::services::SchedulerService for Collection {
/// This behaves like _updateCutoff() in older code - it also unburies at
/// the start of a new day.
fn sched_timing_today(&mut self) -> Result<scheduler::SchedTimingTodayResponse> {
let timing = self.timing_today()?;
self.unbury_if_day_rolled_over(timing)?;
Ok(timing.into())
}
/// Fetch data from DB and return rendered string.
fn studied_today(&mut self) -> Result<generic::String> {
self.studied_today().map(Into::into)
}
/// Message rendering only, for old graphs.
fn studied_today_message(
&mut self,
input: scheduler::StudiedTodayMessageRequest,
) -> Result<generic::String> {
Ok(studied_today(input.cards, input.seconds as f32, &self.tr).into())
}
fn update_stats(&mut self, input: scheduler::UpdateStatsRequest) -> Result<()> {
self.transact_no_undo(|col| {
let today = col.current_due_day(0)?;
let usn = col.usn()?;
col.update_deck_stats(today, usn, input)
})
}
fn extend_limits(&mut self, input: scheduler::ExtendLimitsRequest) -> Result<()> {
self.transact_no_undo(|col| {
let today = col.current_due_day(0)?;
let usn = col.usn()?;
col.extend_limits(
today,
usn,
input.deck_id.into(),
input.new_delta,
input.review_delta,
)
})
}
fn counts_for_deck_today(
&mut self,
input: anki_proto::decks::DeckId,
) -> Result<scheduler::CountsForDeckTodayResponse> {
self.counts_for_deck_today(input.did.into())
}
fn congrats_info(&mut self) -> Result<scheduler::CongratsInfoResponse> {
self.congrats_info()
}
fn restore_buried_and_suspended_cards(
&mut self,
input: anki_proto::cards::CardIds,
) -> Result<anki_proto::collection::OpChanges> {
let cids: Vec<_> = input.cids.into_iter().map(CardId).collect();
self.unbury_or_unsuspend_cards(&cids).map(Into::into)
}
fn unbury_deck(
&mut self,
input: scheduler::UnburyDeckRequest,
) -> Result<anki_proto::collection::OpChanges> {
self.unbury_deck(input.deck_id.into(), input.mode())
.map(Into::into)
}
fn bury_or_suspend_cards(
&mut self,
input: scheduler::BuryOrSuspendCardsRequest,
) -> Result<anki_proto::collection::OpChangesWithCount> {
let mode = input.mode();
let cids = if input.card_ids.is_empty() {
self.storage
.card_ids_of_notes(&input.note_ids.into_newtype(NoteId))?
} else {
input.card_ids.into_newtype(CardId)
};
self.bury_or_suspend_cards(&cids, mode).map(Into::into)
}
fn empty_filtered_deck(
&mut self,
input: anki_proto::decks::DeckId,
) -> Result<anki_proto::collection::OpChanges> {
self.empty_filtered_deck(input.did.into()).map(Into::into)
}
fn rebuild_filtered_deck(
&mut self,
input: anki_proto::decks::DeckId,
) -> Result<anki_proto::collection::OpChangesWithCount> {
self.rebuild_filtered_deck(input.did.into()).map(Into::into)
}
fn schedule_cards_as_new(
&mut self,
input: scheduler::ScheduleCardsAsNewRequest,
) -> Result<anki_proto::collection::OpChanges> {
let cids = input.card_ids.into_newtype(CardId);
self.reschedule_cards_as_new(
&cids,
input.log,
input.restore_position,
input.reset_counts,
input
.context
.and_then(|s| scheduler::schedule_cards_as_new_request::Context::try_from(s).ok()),
)
.map(Into::into)
}
fn schedule_cards_as_new_defaults(
&mut self,
input: scheduler::ScheduleCardsAsNewDefaultsRequest,
) -> Result<scheduler::ScheduleCardsAsNewDefaultsResponse> {
Ok(Collection::reschedule_cards_as_new_defaults(
self,
input.context(),
))
}
fn set_due_date(
&mut self,
input: scheduler::SetDueDateRequest,
) -> Result<anki_proto::collection::OpChanges> {
let config = input.config_key.map(|v| v.key().into());
let days = input.days;
let cids = input.card_ids.into_newtype(CardId);
self.set_due_date(&cids, &days, config).map(Into::into)
}
fn grade_now(
&mut self,
input: scheduler::GradeNowRequest,
) -> Result<anki_proto::collection::OpChanges> {
self.grade_now(&input.card_ids.into_newtype(CardId), input.rating)
.map(Into::into)
}
fn sort_cards(
&mut self,
input: scheduler::SortCardsRequest,
) -> Result<anki_proto::collection::OpChangesWithCount> {
let cids = input.card_ids.into_newtype(CardId);
let (start, step, random, shift) = (
input.starting_from,
input.step_size,
input.randomize,
input.shift_existing,
);
let order = if random {
NewCardDueOrder::Random
} else {
NewCardDueOrder::Preserve
};
self.sort_cards(&cids, start, step, order, shift)
.map(Into::into)
}
fn reposition_defaults(&mut self) -> Result<scheduler::RepositionDefaultsResponse> {
Ok(Collection::reposition_defaults(self))
}
fn sort_deck(
&mut self,
input: scheduler::SortDeckRequest,
) -> Result<anki_proto::collection::OpChangesWithCount> {
self.sort_deck_legacy(input.deck_id.into(), input.randomize)
.map(Into::into)
}
fn get_scheduling_states(
&mut self,
input: anki_proto::cards::CardId,
) -> Result<scheduler::SchedulingStates> {
let cid: CardId = input.into();
self.get_scheduling_states(cid).map(Into::into)
}
fn describe_next_states(
&mut self,
input: scheduler::SchedulingStates,
) -> Result<generic::StringList> {
let states: SchedulingStates = input.into();
self.describe_next_states(&states).map(Into::into)
}
fn state_is_leech(&mut self, input: scheduler::SchedulingState) -> Result<generic::Bool> {
let state: CardState = input.into();
Ok(state.leeched().into())
}
fn answer_card(
&mut self,
input: scheduler::CardAnswer,
) -> Result<anki_proto::collection::OpChanges> {
self.answer_card(&mut input.into()).map(Into::into)
}
fn upgrade_scheduler(&mut self) -> Result<()> {
self.transact_no_undo(|col| col.upgrade_to_v2_scheduler())
}
fn get_queued_cards(
&mut self,
input: scheduler::GetQueuedCardsRequest,
) -> Result<scheduler::QueuedCards> {
self.get_queued_cards(input.fetch_limit as usize, input.intraday_learning_only)
.map(Into::into)
}
fn custom_study(
&mut self,
input: scheduler::CustomStudyRequest,
) -> Result<anki_proto::collection::OpChanges> {
self.custom_study(input).map(Into::into)
}
fn custom_study_defaults(
&mut self,
input: scheduler::CustomStudyDefaultsRequest,
) -> Result<scheduler::CustomStudyDefaultsResponse> {
self.custom_study_defaults(input.deck_id.into())
}
fn compute_fsrs_params(
&mut self,
input: scheduler::ComputeFsrsParamsRequest,
) -> Result<scheduler::ComputeFsrsParamsResponse> {
self.compute_params(ComputeParamsRequest {
search: &input.search,
ignore_revlogs_before_ms: input.ignore_revlogs_before_ms.into(),
current_preset: 1,
total_presets: 1,
current_params: &input.current_params,
num_of_relearning_steps: input.num_of_relearning_steps as usize,
health_check: input.health_check,
})
}
fn simulate_fsrs_review(
&mut self,
input: SimulateFsrsReviewRequest,
) -> Result<SimulateFsrsReviewResponse> {
self.simulate_review(input)
}
fn compute_optimal_retention(
&mut self,
input: SimulateFsrsReviewRequest,
) -> Result<ComputeOptimalRetentionResponse> {
Ok(ComputeOptimalRetentionResponse {
optimal_retention: self.compute_optimal_retention(input)?,
})
}
fn evaluate_params(
&mut self,
input: scheduler::EvaluateParamsRequest,
) -> Result<scheduler::EvaluateParamsResponse> {
let ret = self.evaluate_params(
&input.search,
input.ignore_revlogs_before_ms.into(),
input.num_of_relearning_steps as usize,
)?;
Ok(scheduler::EvaluateParamsResponse {
log_loss: ret.log_loss,
rmse_bins: ret.rmse_bins,
})
}
fn get_optimal_retention_parameters(
&mut self,
input: scheduler::GetOptimalRetentionParametersRequest,
) -> Result<scheduler::GetOptimalRetentionParametersResponse> {
let revlogs = self
.search_cards_into_table(&input.search, SortMode::NoOrder)?
.col
.storage
.get_revlog_entries_for_searched_cards_in_card_order()?;
let simulator_config = self.get_optimal_retention_parameters(revlogs)?;
Ok(GetOptimalRetentionParametersResponse {
deck_size: simulator_config.deck_size as u32,
learn_span: simulator_config.learn_span as u32,
max_cost_perday: simulator_config.max_cost_perday,
max_ivl: simulator_config.max_ivl,
first_rating_prob: simulator_config.first_rating_prob.to_vec(),
review_rating_prob: simulator_config.review_rating_prob.to_vec(),
loss_aversion: 1.0,
learn_limit: simulator_config.learn_limit as u32,
review_limit: simulator_config.review_limit as u32,
learning_step_transitions: simulator_config
.learning_step_transitions
.iter()
.flatten()
.cloned()
.collect(),
relearning_step_transitions: simulator_config
.relearning_step_transitions
.iter()
.flatten()
.cloned()
.collect(),
state_rating_costs: simulator_config
.state_rating_costs
.iter()
.flatten()
.cloned()
.collect(),
learning_step_count: simulator_config.learning_step_count as u32,
relearning_step_count: simulator_config.relearning_step_count as u32,
})
}
fn compute_memory_state(&mut self, input: cards::CardId) -> Result<ComputeMemoryStateResponse> {
self.compute_memory_state(input.into())
}
fn fuzz_delta(&mut self, input: FuzzDeltaRequest) -> Result<FuzzDeltaResponse> {
Ok(FuzzDeltaResponse {
delta_days: self.get_fuzz_delta(input.card_id.into(), input.interval)?,
})
}
}
impl crate::services::BackendSchedulerService for Backend {
fn compute_fsrs_params_from_items(
&self,
req: scheduler::ComputeFsrsParamsFromItemsRequest,
) -> Result<scheduler::ComputeFsrsParamsResponse> {
let fsrs = FSRS::new(None)?;
let fsrs_items = req.items.len() as u32;
let params = fsrs.compute_parameters(ComputeParametersInput {
train_set: req.items.into_iter().map(fsrs_item_proto_to_fsrs).collect(),
progress: None,
enable_short_term: true,
num_relearning_steps: None,
})?;
Ok(ComputeFsrsParamsResponse {
params,
fsrs_items,
health_check_passed: None,
})
}
fn fsrs_benchmark(
&self,
req: scheduler::FsrsBenchmarkRequest,
) -> Result<scheduler::FsrsBenchmarkResponse> {
let fsrs = FSRS::new(None)?;
let train_set = req
.train_set
.into_iter()
.map(fsrs_item_proto_to_fsrs)
.collect();
let params = fsrs.benchmark(ComputeParametersInput {
train_set,
progress: None,
enable_short_term: true,
num_relearning_steps: None,
});
Ok(FsrsBenchmarkResponse { params })
}
fn export_dataset(&self, req: scheduler::ExportDatasetRequest) -> Result<()> {
self.with_col(|col| {
col.export_dataset(
req.min_entries.try_into().unwrap(),
req.target_path.as_ref(),
)
})
}
}
fn fsrs_item_proto_to_fsrs(item: anki_proto::scheduler::FsrsItem) -> FSRSItem {
FSRSItem {
reviews: item
.reviews
.into_iter()
.map(fsrs_review_proto_to_fsrs)
.collect(),
}
}
fn fsrs_review_proto_to_fsrs(review: anki_proto::scheduler::FsrsReview) -> FSRSReview {
FSRSReview {
delta_t: review.delta_t,
rating: review.rating,
}
}