Anki/rslib/src/scheduler/fsrs/params.rs
Jarrett Ye 62e01fe03a
Fix Cards with Missing Last Review Time During Database Check (#4237)
* Fix Cards with Missing Last Review Time During Database Check

* clippy

* Apply suggestions from code review

Co-authored-by: Luc Mcgrady <lucmcgrady@gmail.com>

* Apply suggestions from code review

Co-authored-by: user1823 <92206575+user1823@users.noreply.github.com>

* Add is_reset method to RevlogEntry and update scheduling logic

This commit introduces the `is_reset` method to the `RevlogEntry` struct, which identifies entries representing reset operations. Additionally, the scheduling logic in `memory_state.rs` and `params.rs` has been updated to utilize this new method, ensuring that reset entries are handled correctly during review scheduling.

* Implement is_cramming method in RevlogEntry and update scheduling logic

This commit adds the `is_cramming` method to the `RevlogEntry` struct, which identifies entries representing cramming operations. The scheduling logic in `params.rs` has been updated to utilize this new method, improving the clarity and maintainability of the code.

* Refactor rating logic in RevlogEntry and update related scheduling functions

This commit introduces a new `has_rating` method in the `RevlogEntry` struct to encapsulate the logic for checking if an entry has a rating. The scheduling logic in `params.rs` and the calculation of normal answer counts in `card.rs` have been updated to use this new method, enhancing code clarity and maintainability.

* update revlog test helper function to assign button_chosen correctly

* Refactor card property fixing logic to use CardFixStats struct

* Add one-way sync trigger for last review time updates in dbcheck

* Update documentation for is_reset method in RevlogEntry to clarify ease_factor condition

* Apply suggestions from code review

Co-authored-by: user1823 <92206575+user1823@users.noreply.github.com>

* Minor wording tweak

---------

Co-authored-by: Luc Mcgrady <lucmcgrady@gmail.com>
Co-authored-by: user1823 <92206575+user1823@users.noreply.github.com>
2025-08-06 19:49:30 +10:00

866 lines
29 KiB
Rust

// Copyright: Ankitects Pty Ltd and contributors
// License: GNU AGPL, version 3 or later; http://www.gnu.org/licenses/agpl.html
use std::collections::HashMap;
use std::iter;
use std::path::Path;
use std::thread;
use std::time::Duration;
use anki_io::write_file;
use anki_proto::scheduler::ComputeFsrsParamsResponse;
use anki_proto::stats::revlog_entry;
use anki_proto::stats::Dataset;
use anki_proto::stats::DeckEntry;
use chrono::NaiveDate;
use chrono::NaiveTime;
use fsrs::CombinedProgressState;
use fsrs::ComputeParametersInput;
use fsrs::FSRSItem;
use fsrs::FSRSReview;
use fsrs::MemoryState;
use fsrs::ModelEvaluation;
use fsrs::FSRS;
use itertools::Itertools;
use prost::Message;
use crate::decks::immediate_parent_name;
use crate::prelude::*;
use crate::revlog::RevlogEntry;
use crate::revlog::RevlogReviewKind;
use crate::search::Node;
use crate::search::SearchNode;
use crate::search::SortMode;
pub(crate) type Params = Vec<f32>;
pub(crate) fn ignore_revlogs_before_date_to_ms(
ignore_revlogs_before_date: &String,
) -> Result<TimestampMillis> {
Ok(match ignore_revlogs_before_date {
s if s.is_empty() => 0,
s => NaiveDate::parse_from_str(s.as_str(), "%Y-%m-%d")
.or_else(|err| invalid_input!(err, "Error parsing date: {s}"))?
.and_time(NaiveTime::from_hms_milli_opt(0, 0, 0, 0).unwrap())
.and_utc()
.timestamp_millis(),
}
.into())
}
pub(crate) fn ignore_revlogs_before_ms_from_config(config: &DeckConfig) -> Result<TimestampMillis> {
ignore_revlogs_before_date_to_ms(&config.inner.ignore_revlogs_before_date)
}
pub struct ComputeParamsRequest<'t> {
pub search: &'t str,
pub ignore_revlogs_before_ms: TimestampMillis,
pub current_preset: u32,
pub total_presets: u32,
pub current_params: &'t Params,
pub num_of_relearning_steps: usize,
pub health_check: bool,
}
/// r: retention
fn log_loss_adjustment(r: f32) -> f32 {
0.623 * (4. * r * (1. - r)).powf(0.738)
}
/// r: retention
///
/// c: review count
fn rmse_adjustment(r: f32, c: u32) -> f32 {
0.0135 / (r.powf(0.504) - 1.14) + 0.176 / ((c as f32 / 1000.).powf(0.825) + 2.22) + 0.101
}
impl Collection {
/// Note this does not return an error if there are less than 400 items -
/// the caller should instead check the fsrs_items count in the return
/// value.
pub fn compute_params(
&mut self,
request: ComputeParamsRequest,
) -> Result<ComputeFsrsParamsResponse> {
let ComputeParamsRequest {
search,
ignore_revlogs_before_ms: ignore_revlogs_before,
current_preset,
total_presets,
current_params,
num_of_relearning_steps,
health_check,
} = request;
self.clear_progress();
let timing = self.timing_today()?;
let revlogs = self.revlog_for_srs(search)?;
let (items, review_count) =
fsrs_items_for_training(revlogs.clone(), timing.next_day_at, ignore_revlogs_before);
let fsrs_items = items.len() as u32;
if fsrs_items == 0 {
return Ok(ComputeFsrsParamsResponse {
params: current_params.to_vec(),
fsrs_items,
health_check_passed: None,
});
}
// adapt the progress handler to our built-in progress handling
let create_progress_thread = || -> Result<_> {
let mut anki_progress = self.new_progress_handler::<ComputeParamsProgress>();
anki_progress.update(false, |p| {
p.current_preset = current_preset;
p.total_presets = total_presets;
})?;
let progress = CombinedProgressState::new_shared();
let progress2 = progress.clone();
let progress_thread = thread::spawn(move || {
let mut finished = false;
while !finished {
thread::sleep(Duration::from_millis(100));
let mut guard = progress.lock().unwrap();
if let Err(_err) = anki_progress.update(false, |s| {
s.total_iterations = guard.total() as u32;
s.current_iteration = guard.current() as u32;
s.reviews = review_count as u32;
finished = guard.finished();
}) {
guard.want_abort = true;
return;
}
}
});
Ok((progress2, progress_thread))
};
let (progress, progress_thread) = create_progress_thread()?;
let fsrs = FSRS::new(None)?;
let input = ComputeParametersInput {
train_set: items.clone(),
progress: Some(progress.clone()),
enable_short_term: true,
num_relearning_steps: Some(num_of_relearning_steps),
};
let mut params = fsrs.compute_parameters(input.clone())?;
progress_thread.join().ok();
if let Ok(current_fsrs) = FSRS::new(Some(current_params)) {
let current_log_loss = current_fsrs.evaluate(items.clone(), |_| true)?.log_loss;
let optimized_fsrs = FSRS::new(Some(&params))?;
let optimized_log_loss = optimized_fsrs.evaluate(items.clone(), |_| true)?.log_loss;
if current_log_loss <= optimized_log_loss {
if num_of_relearning_steps <= 1 {
params = current_params.to_vec();
} else {
let memory_state = MemoryState {
stability: 1.0,
difficulty: 1.0,
};
let s_fail = current_fsrs.next_states(Some(memory_state), 0.9, 2)?.again;
let mut s_short_term = s_fail.memory;
for _ in 0..num_of_relearning_steps {
s_short_term = current_fsrs
.next_states(Some(s_short_term), 0.9, 0)?
.good
.memory;
}
if s_short_term.stability < memory_state.stability {
params = current_params.to_vec();
}
}
}
}
let health_check_passed = if health_check {
let fsrs = FSRS::new(None)?;
fsrs.evaluate_with_time_series_splits(input, |_| true)
.ok()
.map(|eval| {
let r = items.iter().fold(0, |p, item| {
p + (item
.reviews
.last()
.map(|reviews| reviews.rating)
.unwrap_or(0)
> 1) as u32
}) as f32
/ fsrs_items as f32;
let adjusted_log_loss = eval.log_loss / log_loss_adjustment(r);
let adjusted_rmse = eval.rmse_bins / rmse_adjustment(r, fsrs_items);
adjusted_log_loss <= 1.11 || adjusted_rmse <= 1.53
})
} else {
None
};
Ok(ComputeFsrsParamsResponse {
params,
fsrs_items,
health_check_passed,
})
}
pub(crate) fn revlog_for_srs(
&mut self,
search: impl TryIntoSearch,
) -> Result<Vec<RevlogEntry>> {
let search = search.try_into_search()?;
// a whole-collection search can match revlog entries of deleted cards, too
if let Node::Group(nodes) = &search {
if let &[Node::Search(SearchNode::WholeCollection)] = &nodes[..] {
return self.storage.get_all_revlog_entries_in_card_order();
}
}
self.search_cards_into_table(search, SortMode::NoOrder)?
.col
.storage
.get_revlog_entries_for_searched_cards_in_card_order()
}
/// Used for exporting revlogs for algorithm research.
pub fn export_dataset(&mut self, min_entries: usize, target_path: &Path) -> Result<()> {
let revlog_entries = self.storage.get_revlog_entries_for_export_dataset()?;
if revlog_entries.len() < min_entries {
return Err(AnkiError::FsrsInsufficientData);
}
let revlogs = revlog_entries
.into_iter()
.map(revlog_entry_to_proto)
.collect_vec();
let cards = self.storage.get_all_card_entries()?;
let decks_map = self.storage.get_decks_map()?;
let deck_name_to_id: HashMap<String, DeckId> = decks_map
.into_iter()
.map(|(id, deck)| (deck.name.to_string(), id))
.collect();
let decks = self
.storage
.get_all_decks()?
.into_iter()
.filter_map(|deck| {
if let Some(preset_id) = deck.config_id().map(|id| id.0) {
let parent_id = immediate_parent_name(&deck.name.to_string())
.and_then(|parent_name| deck_name_to_id.get(parent_name))
.map(|id| id.0)
.unwrap_or(0);
Some(DeckEntry {
id: deck.id.0,
parent_id,
preset_id,
})
} else {
None
}
})
.collect_vec();
let next_day_at = self.timing_today()?.next_day_at.0;
let dataset = Dataset {
revlogs,
cards,
decks,
next_day_at,
};
let data = dataset.encode_to_vec();
write_file(target_path, data)?;
Ok(())
}
pub fn evaluate_params(
&mut self,
search: &str,
ignore_revlogs_before: TimestampMillis,
num_of_relearning_steps: usize,
) -> Result<ModelEvaluation> {
let timing = self.timing_today()?;
let revlogs = self.revlog_for_srs(search)?;
let (items, review_count) =
fsrs_items_for_training(revlogs, timing.next_day_at, ignore_revlogs_before);
let mut anki_progress = self.new_progress_handler::<ComputeParamsProgress>();
anki_progress.state.reviews = review_count as u32;
let fsrs = FSRS::new(None)?;
let input = ComputeParametersInput {
train_set: items.clone(),
progress: None,
enable_short_term: true,
num_relearning_steps: Some(num_of_relearning_steps),
};
Ok(fsrs.evaluate_with_time_series_splits(input, |ip| {
anki_progress
.update(false, |p| {
p.total_iterations = ip.total as u32;
p.current_iteration = ip.current as u32;
})
.is_ok()
})?)
}
pub fn evaluate_params_legacy(
&mut self,
params: &Params,
search: &str,
ignore_revlogs_before: TimestampMillis,
) -> Result<ModelEvaluation> {
let timing = self.timing_today()?;
let mut anki_progress = self.new_progress_handler::<ComputeParamsProgress>();
let guard = self.search_cards_into_table(search, SortMode::NoOrder)?;
let revlogs: Vec<RevlogEntry> = guard
.col
.storage
.get_revlog_entries_for_searched_cards_in_card_order()?;
let (items, review_count) =
fsrs_items_for_training(revlogs, timing.next_day_at, ignore_revlogs_before);
anki_progress.state.reviews = review_count as u32;
let fsrs = FSRS::new(Some(params))?;
Ok(fsrs.evaluate(items, |ip| {
anki_progress
.update(false, |p| {
p.total_iterations = ip.total as u32;
p.current_iteration = ip.current as u32;
})
.is_ok()
})?)
}
}
#[derive(Default, Clone, Copy, Debug)]
pub struct ComputeParamsProgress {
pub current_iteration: u32,
pub total_iterations: u32,
pub reviews: u32,
/// Only used in 'compute all params' case
pub current_preset: u32,
/// Only used in 'compute all params' case
pub total_presets: u32,
}
/// Convert a series of revlog entries sorted by card id into FSRS items.
fn fsrs_items_for_training(
revlogs: Vec<RevlogEntry>,
next_day_at: TimestampSecs,
review_revlogs_before: TimestampMillis,
) -> (Vec<FSRSItem>, usize) {
let mut review_count: usize = 0;
let mut revlogs = revlogs
.into_iter()
.chunk_by(|r| r.cid)
.into_iter()
.filter_map(|(_cid, entries)| {
reviews_for_fsrs(entries.collect(), next_day_at, true, review_revlogs_before)
})
.flat_map(|i| {
review_count += i.filtered_revlogs.len();
i.fsrs_items
})
.collect_vec();
// Sort by RevlogId
revlogs.sort_by_key(|(revlog_id, _)| revlog_id.0);
// Extract only the FSRSItems after sorting
let revlogs = revlogs.into_iter().map(|(_, item)| item).collect_vec();
(revlogs, review_count)
}
pub(crate) struct ReviewsForFsrs {
/// The revlog entries that remain after filtering (e.g. excluding
/// review entries prior to a card being reset).
pub filtered_revlogs: Vec<RevlogEntry>,
/// FSRS items derived from the filtered revlogs.
pub fsrs_items: Vec<(RevlogId, FSRSItem)>,
/// True if there is enough history to derive memory state from history
/// alone. If false, memory state will be derived from SM2.
pub revlogs_complete: bool,
}
/// Filter out unwanted revlog entries, then create a series of FSRS items for
/// training/memory state calculation.
///
/// Filtering consists of removing revlog entries before the supplied timestamp,
/// and removing items such as reviews that happened prior to a card being reset
/// to new.
pub(crate) fn reviews_for_fsrs(
mut entries: Vec<RevlogEntry>,
next_day_at: TimestampSecs,
training: bool,
ignore_revlogs_before: TimestampMillis,
) -> Option<ReviewsForFsrs> {
let mut first_of_last_learn_entries = None;
let mut first_user_grade_idx = None;
let mut revlogs_complete = false;
// Working backwards from the latest review...
for (index, entry) in entries.iter().enumerate().rev() {
if entry.is_cramming() {
continue;
}
// For incomplete review histories, initial memory state is based on the first
// user-graded review after the cutoff date with interval >= 1d.
let within_cutoff = entry.id.0 > ignore_revlogs_before.0;
let user_graded = entry.has_rating();
let interday = entry.interval >= 1 || entry.interval <= -86400;
if user_graded && within_cutoff && interday {
first_user_grade_idx = Some(index);
}
if user_graded && entry.review_kind == RevlogReviewKind::Learning {
first_of_last_learn_entries = Some(index);
revlogs_complete = true;
} else if entry.is_reset() {
// Ignore entries prior to a `Reset` if a learning step has come after,
// but consider revlogs complete.
if first_of_last_learn_entries.is_some() {
revlogs_complete = true;
break;
// Ignore entries prior to a `Reset` if the user has graded a card
// after the reset.
} else if first_user_grade_idx.is_some() {
revlogs_complete = false;
break;
// User has not graded the card since it was reset, so all history
// filtered out.
} else {
return None;
}
// Previous versions of Anki didn't add a revlog entry when the card was
// reset.
} else if first_of_last_learn_entries.is_some() {
break;
}
}
if training {
// While training, ignore the entire card if the first learning step of the last
// group of learning steps is before the ignore_revlogs_before date
if let Some(idx) = first_of_last_learn_entries {
if entries[idx].id.0 < ignore_revlogs_before.0 {
return None;
}
}
} else {
// While reviewing, if the first learning step is before the ignore date,
// we ignore it, and will fall back on SM2 info and the last user grade below.
if let Some(idx) = first_of_last_learn_entries {
if entries[idx].id.0 < ignore_revlogs_before.0 && idx < entries.len() - 1 {
revlogs_complete = false;
first_of_last_learn_entries = None;
}
}
}
if let Some(idx) = first_of_last_learn_entries {
// start from the learning step
if idx > 0 {
entries.drain(..idx);
}
} else if training {
// when training, we ignore cards that don't have any learning steps
return None;
} else if let Some(idx) = first_user_grade_idx {
// if there are no learning entries, but the user has reviewed the card,
// we ignore all entries before the first grade
if idx > 0 {
entries.drain(..idx);
}
} else {
// if no valid user grades were found, ignore the card.
return None;
}
// Filter out unwanted entries
entries.retain(|entry| entry.has_rating_and_affects_scheduling());
// Compute delta_t for each entry
let delta_ts = iter::once(0)
.chain(entries.iter().tuple_windows().map(|(previous, current)| {
previous.days_elapsed(next_day_at) - current.days_elapsed(next_day_at)
}))
.collect_vec();
let skip = if training { 1 } else { 0 };
// Convert the remaining entries into separate FSRSItems, where each item
// contains all reviews done until then.
let items: Vec<(RevlogId, FSRSItem)> = entries
.iter()
.enumerate()
.skip(skip)
.map(|(outer_idx, entry)| {
let reviews = entries
.iter()
.take(outer_idx + 1)
.enumerate()
.map(|(inner_idx, r)| FSRSReview {
rating: r.button_chosen as u32,
delta_t: delta_ts[inner_idx],
})
.collect();
(entry.id, FSRSItem { reviews })
})
.filter(|(_, item)| !training || item.reviews.last().unwrap().delta_t > 0)
.collect_vec();
if items.is_empty() {
None
} else {
Some(ReviewsForFsrs {
fsrs_items: items,
revlogs_complete,
filtered_revlogs: entries,
})
}
}
impl RevlogEntry {
fn days_elapsed(&self, next_day_at: TimestampSecs) -> u32 {
(next_day_at.elapsed_secs_since(self.id.as_secs()) / 86_400).max(0) as u32
}
}
fn revlog_entry_to_proto(e: RevlogEntry) -> anki_proto::stats::RevlogEntry {
anki_proto::stats::RevlogEntry {
id: e.id.0,
cid: e.cid.0,
usn: 0,
button_chosen: e.button_chosen as u32,
interval: e.interval,
last_interval: e.last_interval,
ease_factor: e.ease_factor,
taken_millis: e.taken_millis,
review_kind: match e.review_kind {
RevlogReviewKind::Learning => revlog_entry::ReviewKind::Learning,
RevlogReviewKind::Review => revlog_entry::ReviewKind::Review,
RevlogReviewKind::Relearning => revlog_entry::ReviewKind::Relearning,
RevlogReviewKind::Filtered => revlog_entry::ReviewKind::Filtered,
RevlogReviewKind::Manual => revlog_entry::ReviewKind::Manual,
RevlogReviewKind::Rescheduled => revlog_entry::ReviewKind::Rescheduled,
} as i32,
}
}
#[cfg(test)]
pub(crate) mod tests {
use super::*;
const NEXT_DAY_AT: TimestampSecs = TimestampSecs(86400 * 1000);
fn days_ago_ms(days_ago: i64) -> TimestampMillis {
((NEXT_DAY_AT.0 - days_ago * 86400) * 1000).into()
}
pub(crate) fn revlog(review_kind: RevlogReviewKind, days_ago: i64) -> RevlogEntry {
let button_chosen = match review_kind {
RevlogReviewKind::Manual | RevlogReviewKind::Rescheduled => 0,
_ => 3,
};
RevlogEntry {
review_kind,
id: days_ago_ms(days_ago).into(),
button_chosen,
interval: 1,
..Default::default()
}
}
pub(crate) fn review(delta_t: u32) -> FSRSReview {
FSRSReview { rating: 3, delta_t }
}
pub(crate) fn convert_ignore_before(
revlog: &[RevlogEntry],
training: bool,
ignore_before: TimestampMillis,
) -> Option<Vec<FSRSItem>> {
reviews_for_fsrs(revlog.to_vec(), NEXT_DAY_AT, training, ignore_before)
.map(|i| i.fsrs_items.into_iter().map(|(_, item)| item).collect_vec())
}
pub(crate) fn convert(revlog: &[RevlogEntry], training: bool) -> Option<Vec<FSRSItem>> {
convert_ignore_before(revlog, training, 0.into())
}
#[macro_export]
macro_rules! fsrs_items {
($($reviews:expr),*) => {
Some(vec![
$(
FSRSItem {
reviews: $reviews.to_vec()
}
),*
])
};
}
pub(crate) use fsrs_items;
#[test]
fn delta_t_is_correct() -> Result<()> {
assert_eq!(
convert(
&[
revlog(RevlogReviewKind::Learning, 1),
revlog(RevlogReviewKind::Review, 0)
],
true,
),
fsrs_items!([review(0), review(1)])
);
assert_eq!(
convert(
&[
revlog(RevlogReviewKind::Learning, 15),
revlog(RevlogReviewKind::Learning, 13),
revlog(RevlogReviewKind::Review, 10),
revlog(RevlogReviewKind::Review, 5)
],
true,
),
fsrs_items!(
[review(0), review(2)],
[review(0), review(2), review(3)],
[review(0), review(2), review(3), review(5)]
)
);
assert_eq!(
convert(
&[
revlog(RevlogReviewKind::Learning, 15),
revlog(RevlogReviewKind::Learning, 13),
],
true,
),
fsrs_items!([review(0), review(2),])
);
Ok(())
}
#[test]
fn cram_is_filtered() {
assert_eq!(
convert(
&[
revlog(RevlogReviewKind::Learning, 10),
revlog(RevlogReviewKind::Review, 9),
revlog(RevlogReviewKind::Filtered, 7),
revlog(RevlogReviewKind::Review, 4),
],
true,
),
fsrs_items!([review(0), review(1)], [review(0), review(1), review(5)])
);
}
#[test]
fn set_due_date_is_filtered() {
assert_eq!(
convert(
&[
revlog(RevlogReviewKind::Learning, 10),
revlog(RevlogReviewKind::Review, 9),
RevlogEntry {
ease_factor: 100,
..revlog(RevlogReviewKind::Manual, 7)
},
revlog(RevlogReviewKind::Review, 4),
],
true,
),
fsrs_items!([review(0), review(1)], [review(0), review(1), review(5)])
);
}
#[test]
fn card_reset_drops_all_previous_history() {
// If Reset comes in between two Learn entries, only the ones after the Reset
// are used.
assert_eq!(
convert(
&[
revlog(RevlogReviewKind::Learning, 10),
RevlogEntry {
ease_factor: 0,
..revlog(RevlogReviewKind::Manual, 7)
},
revlog(RevlogReviewKind::Learning, 4),
revlog(RevlogReviewKind::Review, 0),
],
true,
),
fsrs_items!([review(0), review(4)])
);
// Return None if Reset is the last entry or is followed by only manual entries.
assert_eq!(
convert(
&[
revlog(RevlogReviewKind::Learning, 10),
revlog(RevlogReviewKind::Review, 9),
RevlogEntry {
ease_factor: 0,
..revlog(RevlogReviewKind::Manual, 7)
},
RevlogEntry {
ease_factor: 100,
..revlog(RevlogReviewKind::Manual, 7)
},
],
false,
),
None,
);
// If non-learning user-graded entries are found after Reset, return None during
// training but return the remaining entries during memory state calculation.
assert_eq!(
convert(
&[
revlog(RevlogReviewKind::Learning, 10),
revlog(RevlogReviewKind::Review, 9),
RevlogEntry {
ease_factor: 0,
..revlog(RevlogReviewKind::Manual, 7)
},
revlog(RevlogReviewKind::Review, 1),
revlog(RevlogReviewKind::Relearning, 0),
],
true,
),
None,
);
assert_eq!(
convert(
&[
revlog(RevlogReviewKind::Review, 9),
RevlogEntry {
ease_factor: 0,
..revlog(RevlogReviewKind::Manual, 7)
},
revlog(RevlogReviewKind::Review, 1),
revlog(RevlogReviewKind::Relearning, 0),
],
false,
),
fsrs_items!([review(0)], [review(0), review(1)])
);
}
#[test]
fn single_learning_step_skipped_when_training() {
assert_eq!(
convert(&[revlog(RevlogReviewKind::Learning, 1),], true),
None,
);
assert_eq!(
convert(&[revlog(RevlogReviewKind::Learning, 1),], false),
fsrs_items!([review(0)])
);
}
#[test]
fn ignores_cards_before_ignore_before_date_when_training() {
let revlogs = &[
revlog(RevlogReviewKind::Learning, 10),
revlog(RevlogReviewKind::Learning, 8),
];
// | = Ignore before
// L = learning step
// L L |
assert_eq!(convert_ignore_before(revlogs, true, days_ago_ms(7)), None);
// L | L
assert_eq!(convert_ignore_before(revlogs, true, days_ago_ms(9)), None);
// L (|L) (exact same millisecond)
assert_eq!(
convert_ignore_before(revlogs, true, days_ago_ms(10)),
convert(revlogs, true)
);
// | L L
assert_eq!(
convert_ignore_before(revlogs, true, days_ago_ms(11)),
convert(revlogs, true)
);
}
#[test]
fn partially_ignored_learning_steps_terminate_training() {
let revlogs = &[
revlog(RevlogReviewKind::Learning, 10),
revlog(RevlogReviewKind::Learning, 8),
revlog(RevlogReviewKind::Review, 6),
];
// | = Ignore before
// L = learning step
// L | L R
assert_eq!(convert_ignore_before(revlogs, true, days_ago_ms(9)), None);
}
#[test]
fn skip_initial_relearning_steps() {
let revlogs = &[
revlog(RevlogReviewKind::Review, 10),
RevlogEntry {
button_chosen: 1, // Again
interval: -600,
..revlog(RevlogReviewKind::Review, 8)
},
revlog(RevlogReviewKind::Relearning, 8),
revlog(RevlogReviewKind::Review, 6),
];
// | = Ignore before
// A = Again
// X = Relearning
// R | A X R
assert_eq!(
convert_ignore_before(revlogs, false, days_ago_ms(9)),
fsrs_items!([review(0)], [review(0), review(2)])
);
}
#[test]
fn ignore_before_date_between_learning_steps_when_reviewing() {
let revlogs = &[
revlog(RevlogReviewKind::Learning, 10),
revlog(RevlogReviewKind::Learning, 8),
revlog(RevlogReviewKind::Review, 2),
];
// L | L R
assert_ne!(
convert_ignore_before(revlogs, false, days_ago_ms(9)),
convert(revlogs, false)
);
assert_eq!(
convert_ignore_before(revlogs, false, days_ago_ms(9))
.unwrap()
.len(),
2
);
// | L L R
assert_eq!(
convert_ignore_before(revlogs, false, days_ago_ms(11)),
convert(revlogs, false)
);
}
#[test]
fn handle_ignore_before_when_no_learning_steps() {
let revlogs = &[
revlog(RevlogReviewKind::Review, 10),
revlog(RevlogReviewKind::Review, 8),
revlog(RevlogReviewKind::Review, 6),
];
// R | R R
assert_eq!(
convert_ignore_before(revlogs, false, days_ago_ms(9))
.unwrap()
.len(),
2
);
}
#[test]
fn ignore_before_after_last_revlog_entry() {
let revlogs = &[
revlog(RevlogReviewKind::Learning, 10),
revlog(RevlogReviewKind::Review, 6),
];
// L R |
assert_eq!(convert_ignore_before(revlogs, false, days_ago_ms(4)), None);
}
}