mirror of
https://github.com/ankitects/anki.git
synced 2025-09-19 06:22:22 -04:00

Anki used random 64bit IDs for cards, facts and fields. This had some nice properties: - merging data in syncs and imports was simply a matter of copying each way, as conflicts were astronomically unlikely - it made it easy to identify identical cards and prevent them from being reimported But there were some negatives too: - they're more expensive to store - javascript can't handle numbers > 2**53, which means AnkiMobile, iAnki and so on have to treat the ids as strings, which is slow - simply copying data in a sync or import can lead to corruption, as while a duplicate id indicates the data was originally the same, it may have diverged. A more intelligent approach is necessary. - sqlite was sorting the fields table based on the id, which meant the fields were spread across the table, and costly to fetch So instead, we'll move to incremental ids. In the case of model changes we'll declare that a schema change and force a full sync to avoid having to deal with conflicts, and in the case of cards and facts, we'll need to update the ids on one end to merge. Identical cards can be detected by checking to see if their id is the same and their creation time is the same. Creation time has been added back to cards and facts because it's necessary for sync conflict merging. That means facts.pos is not required. The graves table has been removed. It's not necessary for schema related changes, and dead cards/facts can be represented as a card with queue=-4 and created=0. Because we will record schema modification time and can ensure a full sync propagates to all endpoints, it means we can remove the dead cards/facts on schema change. Tags have been removed from the facts table and are represented as a field with ord=-1 and fmid=0. Combined with the locality improvement for fields, it means that fetching fields is not much more expensive than using the q/a cache. Because of the above, removing the q/a cache is a possibility now. The q and a columns on cards has been dropped. It will still be necessary to render the q/a on fact add/edit, since we need to record media references. It would be nice to avoid this in the future. Perhaps one way would be the ability to assign a type to fields, like "image", "audio", or "latex". LaTeX needs special consider anyway, as it was being rendered into the q/a cache.
556 lines
19 KiB
Python
556 lines
19 KiB
Python
# -*- coding: utf-8 -*-
|
|
# Copyright: Damien Elmes <anki@ichi2.net>
|
|
# License: GNU GPL, version 3 or later; http://www.gnu.org/copyleft/gpl.html
|
|
|
|
import time, datetime, simplejson, random
|
|
from operator import itemgetter
|
|
from heapq import *
|
|
#from anki.cards import Card
|
|
from anki.utils import parseTags, ids2str
|
|
from anki.lang import _
|
|
from anki.consts import *
|
|
|
|
# the standard Anki scheduler
|
|
class Scheduler(object):
|
|
def __init__(self, deck):
|
|
self.deck = deck
|
|
self.db = deck.db
|
|
self.name = "main"
|
|
self.queueLimit = 200
|
|
self.learnLimit = 1000
|
|
self.updateCutoff()
|
|
|
|
def getCard(self):
|
|
"Pop the next card from the queue. None if finished."
|
|
self.checkDay()
|
|
id = self.getCardId()
|
|
if id:
|
|
return self.deck.getCard(id)
|
|
|
|
def reset(self):
|
|
self.resetConf()
|
|
t = time.time()
|
|
self.resetLearn()
|
|
print "lrn %0.2fms" % ((time.time() - t)*1000); t = time.time()
|
|
self.resetReview()
|
|
print "rev %0.2fms" % ((time.time() - t)*1000); t = time.time()
|
|
self.resetNew()
|
|
print "new %0.2fms" % ((time.time() - t)*1000); t = time.time()
|
|
|
|
def answerCard(self, card, ease):
|
|
if card.queue == 0:
|
|
self.answerLearnCard(card, ease)
|
|
elif card.queue == 1:
|
|
self.revCount -= 1
|
|
self.answerRevCard(card, ease)
|
|
elif card.queue == 2:
|
|
# put it in the learn queue
|
|
card.queue = 0
|
|
self.newCount -= 1
|
|
self.answerLearnCard(card, ease)
|
|
else:
|
|
raise Exception("Invalid queue")
|
|
card.flushSched()
|
|
|
|
def counts(self):
|
|
# FIXME: should learn count include new cards due today, or be separate?
|
|
return (self.learnCount, self.revCount)
|
|
|
|
def cardQueue(self, card):
|
|
return card.queue
|
|
|
|
# Getting the next card
|
|
##########################################################################
|
|
|
|
def getCardId(self):
|
|
"Return the next due card id, or None."
|
|
# learning card due?
|
|
id = self.getLearnCard()
|
|
if id:
|
|
return id
|
|
# new first, or time for one?
|
|
if self.timeForNewCard():
|
|
return self.getNewCard()
|
|
# card due for review?
|
|
id = self.getReviewCard()
|
|
if id:
|
|
return id
|
|
# new cards left?
|
|
id = self.getNewCard()
|
|
if id:
|
|
return id
|
|
# collapse or finish
|
|
return self.getLearnCard(collapse=True)
|
|
|
|
# New cards
|
|
##########################################################################
|
|
|
|
# need to keep track of reps for timebox and new card introduction
|
|
|
|
def resetNew(self):
|
|
l = self.deck.qconf
|
|
if l['newToday'][0] != self.today:
|
|
# it's a new day; reset counts
|
|
l['newToday'] = [self.today, 0]
|
|
lim = min(self.queueLimit, l['newPerDay'] - l['newToday'][1])
|
|
if lim <= 0:
|
|
self.newQueue = []
|
|
self.newCount = 0
|
|
else:
|
|
self.newQueue = self.db.all("""
|
|
select id %s from cards where
|
|
queue = 2 %s order by due limit %d""" % (self.newOrder(), self.groupLimit('new'),
|
|
lim))
|
|
self.newQueue.sort(key=itemgetter(1), reverse=True)
|
|
self.newCount = len(self.newQueue)
|
|
self.updateNewCardRatio()
|
|
|
|
def getNewCard(self):
|
|
if self.newQueue:
|
|
return self.newQueue.pop()[0]
|
|
|
|
def newOrder(self):
|
|
return (",ord", "")[self.deck.qconf['newTodayOrder']]
|
|
|
|
def updateNewCardRatio(self):
|
|
if self.deck.qconf['newCardSpacing'] == NEW_CARDS_DISTRIBUTE:
|
|
if self.newCount:
|
|
self.newCardModulus = (
|
|
(self.newCount + self.revCount) / self.newCount)
|
|
# if there are cards to review, ensure modulo >= 2
|
|
if self.revCount:
|
|
self.newCardModulus = max(2, self.newCardModulus)
|
|
return
|
|
self.newCardModulus = 0
|
|
|
|
def timeForNewCard(self):
|
|
"True if it's time to display a new card when distributing."
|
|
if not self.newCount:
|
|
return False
|
|
if self.deck.qconf['newCardSpacing'] == NEW_CARDS_LAST:
|
|
return False
|
|
elif self.deck.qconf['newCardSpacing'] == NEW_CARDS_FIRST:
|
|
return True
|
|
elif self.newCardModulus:
|
|
return self.deck.reps and self.deck.reps % self.newCardModulus == 0
|
|
|
|
# Learning queue
|
|
##########################################################################
|
|
|
|
def resetLearn(self):
|
|
self.learnQueue = self.db.all("""
|
|
select due, id from cards where
|
|
queue = 0 and due < :lim order by due
|
|
limit %d""" % self.learnLimit, lim=self.dayCutoff)
|
|
self.learnCount = len(self.learnQueue)
|
|
|
|
def getLearnCard(self, collapse=False):
|
|
if self.learnQueue:
|
|
cutoff = time.time()
|
|
if collapse:
|
|
cutoff -= self.deck.collapseTime
|
|
if self.learnQueue[0][0] < cutoff:
|
|
return heappop(self.learnQueue)[1]
|
|
|
|
def answerLearnCard(self, card, ease):
|
|
# ease 1=no, 2=yes, 3=remove
|
|
conf = self.learnConf(card)
|
|
if ease == 3:
|
|
self.removeLearnCard(card, conf)
|
|
return
|
|
card.cycles += 1
|
|
if ease == 2:
|
|
card.grade += 1
|
|
else:
|
|
card.grade = 0
|
|
if card.grade >= len(conf['delays']):
|
|
self.graduateLearnCard(card, conf)
|
|
else:
|
|
card.due = time.time() + conf['delays'][card.grade]*60
|
|
|
|
def learnConf(self, card):
|
|
conf = self.confForCard(card)
|
|
if card.type == 2:
|
|
return conf['new']
|
|
else:
|
|
return conf['lapse']
|
|
|
|
def removeLearnCard(self, card, conf):
|
|
if card.type == 1:
|
|
int_ = None
|
|
elif not card.cycles:
|
|
# first time bonus
|
|
int_ = conf['ints'][1]
|
|
else:
|
|
# normal remove
|
|
int_ = conf['ints'][2]
|
|
self.rescheduleAsReview(card, conf, int_)
|
|
|
|
def graduateLearnCard(self, card, conf):
|
|
if card.type == 1:
|
|
int_ = None
|
|
else:
|
|
int_ = conf['ints'][0]
|
|
self.rescheduleAsReview(card, conf, int_)
|
|
|
|
def rescheduleAsReview(self, card, conf, int_):
|
|
card.queue = 1
|
|
card.factor = conf['initialFactor']
|
|
if int_:
|
|
# new card
|
|
card.type = 1
|
|
card.interval = int_
|
|
print "handle log, etc"
|
|
|
|
# Reviews
|
|
##########################################################################
|
|
|
|
def resetReview(self):
|
|
self.revQueue = self.db.all("""
|
|
select id from cards where
|
|
queue = 1 %s and due < :lim order by %s limit %d""" % (
|
|
self.groupLimit("rev"), self.revOrder(), self.queueLimit),
|
|
lim=self.dayCutoff)
|
|
if self.deck.qconf['revCardOrder'] == REV_CARDS_RANDOM:
|
|
random.shuffle(self.revQueue)
|
|
else:
|
|
self.revQueue.reverse()
|
|
self.revCount = len(self.revQueue)
|
|
|
|
def getReviewCard(self):
|
|
if self.haveRevCards():
|
|
return self.revQueue.pop()
|
|
|
|
def haveRevCards(self):
|
|
if self.revCount:
|
|
if not self.revQueue:
|
|
self.fillRevQueue()
|
|
return self.revQueue
|
|
|
|
def revOrder(self):
|
|
return ("interval desc",
|
|
"interval",
|
|
"due")[self.deck.qconf['revCardOrder']]
|
|
|
|
# FIXME: rewrite
|
|
def showFailedLast(self):
|
|
return self.collapseTime or not self.delay0
|
|
|
|
# Answering a card
|
|
##########################################################################
|
|
|
|
def _answerCard(self, card, ease):
|
|
undoName = _("Answer Card")
|
|
self.setUndoStart(undoName)
|
|
now = time.time()
|
|
# old state
|
|
oldState = self.cardState(card)
|
|
oldQueue = self.cardQueue(card)
|
|
lastDelaySecs = time.time() - card.due
|
|
lastDelay = lastDelaySecs / 86400.0
|
|
oldSuc = card.successive
|
|
# update card details
|
|
last = card.interval
|
|
card.interval = self.nextInterval(card, ease)
|
|
card.lastInterval = last
|
|
if card.reps:
|
|
# only update if card was not new
|
|
card.lastDue = card.due
|
|
card.due = self.nextDue(card, ease, oldState)
|
|
if not self.finishScheduler:
|
|
# don't update factor in custom schedulers
|
|
self.updateFactor(card, ease)
|
|
# spacing
|
|
self.spaceCards(card)
|
|
# adjust counts for current card
|
|
if ease == 1:
|
|
if card.due < self.dayCutoff:
|
|
self.learnCount += 1
|
|
if oldQueue == 0:
|
|
self.learnCount -= 1
|
|
elif oldQueue == 1:
|
|
self.revCount -= 1
|
|
else:
|
|
self.newAvail -= 1
|
|
# card stats
|
|
self.updateCardStats(card, ease, oldState)
|
|
# update type & ensure past cutoff
|
|
card.type = self.cardType(card)
|
|
card.queue = card.type
|
|
if ease != 1:
|
|
card.due = max(card.due, self.dayCutoff+1)
|
|
# allow custom schedulers to munge the card
|
|
if self.answerPreSave:
|
|
self.answerPreSave(card, ease)
|
|
# save
|
|
card.due = card.due
|
|
card.saveSched()
|
|
# review history
|
|
print "make sure flags is set correctly when reviewing early"
|
|
logReview(self.db, card, ease, 0)
|
|
self.modified = now
|
|
# leech handling - we need to do this after the queue, as it may cause
|
|
# a reset()
|
|
isLeech = self.isLeech(card)
|
|
if isLeech:
|
|
self.handleLeech(card)
|
|
runHook("cardAnswered", card.id, isLeech)
|
|
self.setUndoEnd(undoName)
|
|
|
|
def updateCardStats(self, card, ease, state):
|
|
card.reps += 1
|
|
if ease == 1:
|
|
card.successive = 0
|
|
card.lapses += 1
|
|
else:
|
|
card.successive += 1
|
|
# if not card.firstAnswered:
|
|
# card.firstAnswered = time.time()
|
|
|
|
def spaceCards(self, card):
|
|
new = time.time() + self.newSpacing
|
|
self.db.execute("""
|
|
update cards set
|
|
due = (case
|
|
when queue = 1 then due + 86400 * (case
|
|
when interval*:rev < 1 then 0
|
|
else interval*:rev
|
|
end)
|
|
when queue = 2 then :new
|
|
end),
|
|
modified = :now
|
|
where id != :id and fid = :fid
|
|
and due < :cut
|
|
and queue between 1 and 2""",
|
|
id=card.id, now=time.time(), fid=card.fid,
|
|
cut=self.dayCutoff, new=new, rev=self.revSpacing)
|
|
# update local cache of seen facts
|
|
self.spacedFacts[card.fid] = new
|
|
|
|
# Interval management
|
|
##########################################################################
|
|
|
|
def nextInterval(self, card, ease):
|
|
"Return the next interval for CARD given EASE."
|
|
delay = self.adjustedDelay(card, ease)
|
|
return self._nextInterval(card, delay, ease)
|
|
|
|
def _nextInterval(self, card, delay, ease):
|
|
interval = card.interval
|
|
factor = card.factor
|
|
# if cramming / reviewing early
|
|
if delay < 0:
|
|
interval = max(card.lastInterval, card.interval + delay)
|
|
if interval < self.midIntervalMin:
|
|
interval = 0
|
|
delay = 0
|
|
# if interval is less than mid interval, use presets
|
|
if ease == 1:
|
|
interval *= self.delay2
|
|
if interval < self.hardIntervalMin:
|
|
interval = 0
|
|
elif interval == 0:
|
|
if ease == 2:
|
|
interval = random.uniform(self.hardIntervalMin,
|
|
self.hardIntervalMax)
|
|
elif ease == 3:
|
|
interval = random.uniform(self.midIntervalMin,
|
|
self.midIntervalMax)
|
|
elif ease == 4:
|
|
interval = random.uniform(self.easyIntervalMin,
|
|
self.easyIntervalMax)
|
|
else:
|
|
# if not cramming, boost initial 2
|
|
if (interval < self.hardIntervalMax and
|
|
interval > 0.166):
|
|
mid = (self.midIntervalMin + self.midIntervalMax) / 2.0
|
|
interval = mid / factor
|
|
# multiply last interval by factor
|
|
if ease == 2:
|
|
interval = (interval + delay/4) * 1.2
|
|
elif ease == 3:
|
|
interval = (interval + delay/2) * factor
|
|
elif ease == 4:
|
|
interval = (interval + delay) * factor * self.factorFour
|
|
fuzz = random.uniform(0.95, 1.05)
|
|
interval *= fuzz
|
|
return interval
|
|
|
|
def nextIntervalStr(self, card, ease, short=False):
|
|
"Return the next interval for CARD given EASE as a string."
|
|
int = self.nextInterval(card, ease)
|
|
return anki.utils.fmtTimeSpan(int*86400, short=short)
|
|
|
|
def nextDue(self, card, ease, oldState):
|
|
"Return time when CARD will expire given EASE."
|
|
if ease == 1:
|
|
# 600 is a magic value which means no bonus, and is used to ease
|
|
# upgrades
|
|
cram = self.scheduler == "cram"
|
|
if (not cram and oldState == "mature"
|
|
and self.delay1 and self.delay1 != 600):
|
|
# user wants a bonus of 1+ days. put the failed cards at the
|
|
# start of the future day, so that failures that day will come
|
|
# after the waiting cards
|
|
return self.dayCutoff + (self.delay1 - 1)*86400
|
|
else:
|
|
due = 0
|
|
else:
|
|
due = card.interval * 86400.0
|
|
return due + time.time()
|
|
|
|
def updateFactor(self, card, ease):
|
|
"Update CARD's factor based on EASE."
|
|
print "update cardIsBeingLearnt()"
|
|
if not card.reps:
|
|
# card is new, inherit beginning factor
|
|
card.factor = self.averageFactor
|
|
if card.successive and not self.cardIsBeingLearnt(card):
|
|
if ease == 1:
|
|
card.factor -= 0.20
|
|
elif ease == 2:
|
|
card.factor -= 0.15
|
|
if ease == 4:
|
|
card.factor += 0.10
|
|
card.factor = max(1.3, card.factor)
|
|
|
|
def adjustedDelay(self, card, ease):
|
|
"Return an adjusted delay value for CARD based on EASE."
|
|
if self.cardIsNew(card):
|
|
return 0
|
|
if card.due <= self.dayCutoff:
|
|
return (self.dayCutoff - card.due) / 86400.0
|
|
else:
|
|
return (self.dayCutoff - card.due) / 86400.0
|
|
|
|
# Leeches
|
|
##########################################################################
|
|
|
|
def isLeech(self, card):
|
|
no = card.lapses
|
|
fmax = self.getInt('leechFails')
|
|
if not fmax:
|
|
return
|
|
return (
|
|
# failed
|
|
not card.successive and
|
|
# greater than fail threshold
|
|
no >= fmax and
|
|
# at least threshold/2 reps since last time
|
|
(fmax - no) % (max(fmax/2, 1)) == 0)
|
|
|
|
def handleLeech(self, card):
|
|
scard = self.cardFromId(card.id, True)
|
|
tags = scard.fact.tags
|
|
tags = addTags("Leech", tags)
|
|
scard.fact.tags = canonifyTags(tags)
|
|
scard.fact.setModified(textChanged=True, deck=self)
|
|
self.updateFactTags([scard.fact.id])
|
|
self.db.expunge(scard)
|
|
if self.getBool('suspendLeeches'):
|
|
self.suspendCards([card.id])
|
|
self.reset()
|
|
|
|
# Tools
|
|
##########################################################################
|
|
|
|
def resetConf(self):
|
|
"Update group conf cache."
|
|
self.groupConfs = dict(self.db.all("select id, gcid from groups"))
|
|
self.confCache = {}
|
|
|
|
def confForCard(self, card):
|
|
id = self.groupConfs[card.gid]
|
|
if id not in self.confCache:
|
|
self.confCache[id] = simplejson.loads(
|
|
self.db.scalar("select conf from gconf where id = :id",
|
|
id=id))
|
|
return self.confCache[id]
|
|
|
|
def resetSchedBuried(self):
|
|
"Put temporarily suspended cards back into play."
|
|
self.db.execute(
|
|
"update cards set queue = type where queue = -3")
|
|
|
|
def groupLimit(self, type):
|
|
l = self.deck.qconf[type+"Groups"]
|
|
if not l:
|
|
# everything
|
|
return ""
|
|
return " and gid in %s" % ids2str(l)
|
|
|
|
# Daily cutoff
|
|
##########################################################################
|
|
|
|
def updateCutoff(self):
|
|
d = datetime.datetime.utcfromtimestamp(
|
|
time.time() - self.deck.utcOffset) + datetime.timedelta(days=1)
|
|
d = datetime.datetime(d.year, d.month, d.day)
|
|
newday = self.deck.utcOffset - time.timezone
|
|
d += datetime.timedelta(seconds=newday)
|
|
cutoff = time.mktime(d.timetuple())
|
|
# cutoff must not be in the past
|
|
while cutoff < time.time():
|
|
cutoff += 86400
|
|
# cutoff must not be more than 24 hours in the future
|
|
cutoff = min(time.time() + 86400, cutoff)
|
|
self.dayCutoff = cutoff
|
|
self.today = int(cutoff/86400 - self.deck.crt/86400)
|
|
|
|
def checkDay(self):
|
|
# check if the day has rolled over
|
|
if time.time() > self.dayCutoff:
|
|
self.updateCutoff()
|
|
self.reset()
|
|
|
|
# Review early
|
|
##########################################################################
|
|
|
|
def setupReviewEarlyScheduler(self):
|
|
self.fillRevQueue = self._fillRevEarlyQueue
|
|
self.rebuildRevCount = self._rebuildRevEarlyCount
|
|
self.finishScheduler = self.setupStandardScheduler
|
|
self.answerPreSave = self._reviewEarlyPreSave
|
|
self.scheduler = "reviewEarly"
|
|
|
|
def _reviewEarlyPreSave(self, card, ease):
|
|
if ease > 1:
|
|
# prevent it from appearing in next queue fill
|
|
card.queue = -3
|
|
|
|
def _rebuildRevEarlyCount(self):
|
|
# in the future it would be nice to skip the first x days of due cards
|
|
self.revCount = self.db.scalar(
|
|
self.cardLimit(
|
|
"revActive", "revInactive", """
|
|
select count() from cards c where queue = 1 and due > :now
|
|
"""), now=self.dayCutoff)
|
|
|
|
def _fillRevEarlyQueue(self):
|
|
if self.revCount and not self.revQueue:
|
|
self.revQueue = self.db.all(
|
|
self.cardLimit(
|
|
"revActive", "revInactive", """
|
|
select id, fid from cards c where queue = 1 and due > :lim
|
|
order by due limit %d""" % self.queueLimit), lim=self.dayCutoff)
|
|
self.revQueue.reverse()
|
|
|
|
# Learn more
|
|
##########################################################################
|
|
|
|
def setupLearnMoreScheduler(self):
|
|
self.rebuildNewCount = self._rebuildLearnMoreCount
|
|
self.updateNewCountToday = self._updateLearnMoreCountToday
|
|
self.finishScheduler = self.setupStandardScheduler
|
|
self.scheduler = "learnMore"
|
|
|
|
def _rebuildLearnMoreCount(self):
|
|
self.newAvail = self.db.scalar(
|
|
self.cardLimit(
|
|
"newActive", "newInactive",
|
|
"select count(*) from cards c where queue = 2 "
|
|
"and due < :lim"), lim=self.dayCutoff)
|
|
self.spacedCards = []
|
|
|
|
def _updateLearnMoreCountToday(self):
|
|
self.newCount = self.newAvail
|