Anki/rslib/src/decks/add.rs

165 lines
6.3 KiB
Rust

// Copyright: Ankitects Pty Ltd and contributors
// License: GNU AGPL, version 3 or later; http://www.gnu.org/licenses/agpl.html
use super::name::{immediate_parent_name, normalize_native_name};
use crate::{error::FilteredDeckError, prelude::*};
use std::borrow::Cow;
impl Collection {
/// Normalize deck name and rename if not unique. Bumps mtime and usn if
/// name was changed, but otherwise leaves it the same.
pub(super) fn prepare_deck_for_update(&mut self, deck: &mut Deck, usn: Usn) -> Result<()> {
if let Cow::Owned(name) = normalize_native_name(&deck.name) {
deck.name = name;
deck.set_modified(usn);
}
self.ensure_deck_name_unique(deck, usn)
}
/// Add or update an existing deck modified by the user. May add parents,
/// or rename children as required. Prefer add_deck() or update_deck() to
/// be explicit about your intentions; this function mainly exists so we
/// can integrate with older Python code that behaved this way.
pub(crate) fn add_or_update_deck(&mut self, deck: &mut Deck) -> Result<OpOutput<()>> {
if deck.id.0 == 0 {
self.add_deck(deck)
} else {
self.update_deck(deck)
}
}
/// Add a new deck. The id must be 0, as it will be automatically assigned.
pub fn add_deck(&mut self, deck: &mut Deck) -> Result<OpOutput<()>> {
if deck.id.0 != 0 {
return Err(AnkiError::invalid_input("deck to add must have id 0"));
}
self.transact(Op::AddDeck, |col| col.add_deck_inner(deck, col.usn()?))
}
pub(crate) fn add_deck_inner(&mut self, deck: &mut Deck, usn: Usn) -> Result<()> {
self.prepare_deck_for_update(deck, usn)?;
deck.set_modified(usn);
self.match_or_create_parents(deck, usn)?;
self.add_deck_undoable(deck)
}
pub fn update_deck(&mut self, deck: &mut Deck) -> Result<OpOutput<()>> {
self.transact(Op::UpdateDeck, |col| {
let existing_deck = col.storage.get_deck(deck.id)?.ok_or(AnkiError::NotFound)?;
col.update_deck_inner(deck, existing_deck, col.usn()?)
})
}
pub(crate) fn update_deck_inner(
&mut self,
deck: &mut Deck,
original: Deck,
usn: Usn,
) -> Result<()> {
self.prepare_deck_for_update(deck, usn)?;
deck.set_modified(usn);
let name_changed = original.name != deck.name;
if name_changed {
// match closest parent name
self.match_or_create_parents(deck, usn)?;
// rename children
self.rename_child_decks(&original, &deck.name, usn)?;
}
self.update_single_deck_undoable(deck, original)?;
if name_changed {
// after updating, we need to ensure all grandparents exist, which may not be the case
// in the parent->child case
self.create_missing_parents(&deck.name, usn)?;
}
Ok(())
}
/// Add/update a single deck when syncing/importing. Ensures name is unique
/// & normalized, but does not check parents/children or update mtime
/// (unless the name was changed). Caller must set up transaction.
pub(crate) fn add_or_update_single_deck_with_existing_id(
&mut self,
deck: &mut Deck,
usn: Usn,
) -> Result<()> {
self.prepare_deck_for_update(deck, usn)?;
self.add_or_update_deck_with_existing_id_undoable(deck)
}
pub(crate) fn recover_missing_deck(&mut self, did: DeckId, usn: Usn) -> Result<()> {
let mut deck = Deck::new_normal();
deck.id = did;
deck.name = format!("recovered{}", did);
deck.set_modified(usn);
self.add_or_update_single_deck_with_existing_id(&mut deck, usn)
}
}
impl Collection {
/// Add a single, normal deck with the provided name for a child deck.
/// Caller must have done necessarily validation on name.
fn add_parent_deck(&mut self, machine_name: &str, usn: Usn) -> Result<()> {
let mut deck = Deck::new_normal();
deck.name = machine_name.into();
deck.set_modified(usn);
self.add_deck_undoable(&mut deck)
}
/// If parent deck(s) exist, rewrite name to match their case.
/// If they don't exist, create them.
/// Returns an error if a DB operation fails, or if the first existing parent is a filtered deck.
fn match_or_create_parents(&mut self, deck: &mut Deck, usn: Usn) -> Result<()> {
let child_split: Vec<_> = deck.name.split('\x1f').collect();
if let Some(parent_deck) = self.first_existing_parent(&deck.name, 0)? {
if parent_deck.is_filtered() {
return Err(FilteredDeckError::MustBeLeafNode.into());
}
let parent_count = parent_deck.name.matches('\x1f').count() + 1;
let need_create = parent_count != child_split.len() - 1;
deck.name = format!(
"{}\x1f{}",
parent_deck.name,
&child_split[parent_count..].join("\x1f")
);
if need_create {
self.create_missing_parents(&deck.name, usn)?;
}
Ok(())
} else if child_split.len() == 1 {
// no parents required
Ok(())
} else {
// no existing parents
self.create_missing_parents(&deck.name, usn)
}
}
fn create_missing_parents(&mut self, mut machine_name: &str, usn: Usn) -> Result<()> {
while let Some(parent_name) = immediate_parent_name(machine_name) {
if self.storage.get_deck_id(parent_name)?.is_none() {
self.add_parent_deck(parent_name, usn)?;
}
machine_name = parent_name;
}
Ok(())
}
fn first_existing_parent(
&self,
machine_name: &str,
recursion_level: usize,
) -> Result<Option<Deck>> {
if recursion_level > 10 {
return Err(AnkiError::invalid_input("deck nesting level too deep"));
}
if let Some(parent_name) = immediate_parent_name(machine_name) {
if let Some(parent_did) = self.storage.get_deck_id(parent_name)? {
self.storage.get_deck(parent_did)
} else {
self.first_existing_parent(parent_name, recursion_level + 1)
}
} else {
Ok(None)
}
}
}