Anki/rslib/src/scheduler/fsrs/simulator.rs
2025-08-15 11:40:34 +05:30

346 lines
13 KiB
Rust

// Copyright: Ankitects Pty Ltd and contributors
// License: GNU AGPL, version 3 or later; http://www.gnu.org/licenses/agpl.html
use std::collections::HashMap;
use std::sync::Arc;
use anki_proto::deck_config::deck_config::config::ReviewCardOrder;
use anki_proto::deck_config::deck_config::config::ReviewCardOrder::*;
use anki_proto::scheduler::SimulateFsrsReviewRequest;
use anki_proto::scheduler::SimulateFsrsReviewResponse;
use anki_proto::scheduler::SimulateFsrsWorkloadResponse;
use fsrs::simulate;
use fsrs::PostSchedulingFn;
use fsrs::ReviewPriorityFn;
use fsrs::SimulatorConfig;
use fsrs::FSRS;
use itertools::Itertools;
use rand::rngs::StdRng;
use rand::Rng;
use rayon::iter::IntoParallelIterator;
use rayon::iter::ParallelIterator;
use crate::card::CardQueue;
use crate::card::CardType;
use crate::card::FsrsMemoryState;
use crate::prelude::*;
use crate::scheduler::states::fuzz::constrained_fuzz_bounds;
use crate::scheduler::states::load_balancer::calculate_easy_days_modifiers;
use crate::scheduler::states::load_balancer::interval_to_weekday;
use crate::scheduler::states::load_balancer::parse_easy_days_percentages;
use crate::scheduler::states::load_balancer::select_weighted_interval;
use crate::scheduler::states::load_balancer::EasyDay;
use crate::scheduler::states::load_balancer::LoadBalancerInterval;
use crate::search::SortMode;
pub(crate) fn apply_load_balance_and_easy_days(
interval: f32,
max_interval: f32,
day_elapsed: usize,
due_cnt_per_day: &[usize],
rng: &mut StdRng,
next_day_at: TimestampSecs,
easy_days_percentages: &[EasyDay; 7],
) -> f32 {
let (lower, upper) = constrained_fuzz_bounds(interval, 1, max_interval as u32);
let mut review_counts = vec![0; upper as usize - lower as usize + 1];
// Fill review_counts with due counts for each interval
let start = day_elapsed + lower as usize;
let end = (day_elapsed + upper as usize + 1).min(due_cnt_per_day.len());
if start < due_cnt_per_day.len() {
let copy_len = (end - start).min(review_counts.len());
review_counts[..copy_len].copy_from_slice(&due_cnt_per_day[start..start + copy_len]);
}
let possible_intervals: Vec<u32> = (lower..=upper).collect();
let weekdays = possible_intervals
.iter()
.map(|interval| {
interval_to_weekday(
*interval,
next_day_at.adding_secs(day_elapsed as i64 * 86400),
)
})
.collect::<Vec<_>>();
let easy_days_modifier =
calculate_easy_days_modifiers(easy_days_percentages, &weekdays, &review_counts);
let intervals =
possible_intervals
.iter()
.enumerate()
.map(|(interval_index, &target_interval)| LoadBalancerInterval {
target_interval,
review_count: review_counts[interval_index],
sibling_modifier: 1.0,
easy_days_modifier: easy_days_modifier[interval_index],
});
let fuzz_seed = rng.random();
select_weighted_interval(intervals, Some(fuzz_seed)).unwrap() as f32
}
fn create_review_priority_fn(
review_order: ReviewCardOrder,
deck_size: usize,
) -> Option<ReviewPriorityFn> {
// Helper macro to wrap closure in ReviewPriorityFn
macro_rules! wrap {
($f:expr) => {
Some(ReviewPriorityFn(std::sync::Arc::new($f)))
};
}
match review_order {
// Ease-based ordering
EaseAscending => wrap!(|c, _w| -(c.difficulty * 100.0) as i32),
EaseDescending => wrap!(|c, _w| (c.difficulty * 100.0) as i32),
// Interval-based ordering
IntervalsAscending => wrap!(|c, _w| c.interval as i32),
IntervalsDescending => wrap!(|c, _w| -(c.interval as i32)),
// Retrievability-based ordering
RetrievabilityAscending => {
wrap!(move |c, w| (c.retrievability(w) * 1000.0) as i32)
}
RetrievabilityDescending => {
wrap!(move |c, w| -(c.retrievability(w) * 1000.0) as i32)
}
// Due date ordering
Day | DayThenDeck | DeckThenDay => {
wrap!(|c, _w| c.scheduled_due() as i32)
}
// Random ordering
Random => {
wrap!(move |_c, _w| rand::rng().random_range(0..deck_size) as i32)
}
// Not implemented yet
Added | ReverseAdded => None,
}
}
pub(crate) fn is_included_card(c: &Card) -> bool {
c.queue != CardQueue::Suspended
&& c.queue != CardQueue::PreviewRepeat
&& c.ctype != CardType::New
}
impl Collection {
pub fn simulate_request_to_config(
&mut self,
req: &SimulateFsrsReviewRequest,
) -> Result<(SimulatorConfig, Vec<fsrs::Card>)> {
let guard = self.search_cards_into_table(&req.search, SortMode::NoOrder)?;
let revlogs = guard
.col
.storage
.get_revlog_entries_for_searched_cards_in_card_order()?;
let mut cards = guard.col.storage.all_searched_cards()?;
drop(guard);
// calculate any missing memory state
for c in &mut cards {
if is_included_card(c) && c.memory_state.is_none() {
let original = c.clone();
let fsrs_data = self.compute_memory_state(c.id)?;
c.memory_state = fsrs_data.state.map(Into::into);
c.desired_retention = Some(fsrs_data.desired_retention);
c.decay = Some(fsrs_data.decay);
self.update_card_inner(c, original, self.usn()?)?;
}
}
let days_elapsed = self.timing_today().unwrap().days_elapsed as i32;
let new_cards = cards
.iter()
.filter(|c| c.ctype == CardType::New && c.queue != CardQueue::Suspended)
.count()
+ req.deck_size as usize;
let fsrs = FSRS::new(Some(&req.params))?;
let mut converted_cards = cards
.into_iter()
.filter(is_included_card)
.filter_map(|c| {
let memory_state = match c.memory_state {
Some(state) => state,
// cards that lack memory states after compute_memory_state have no FSRS items,
// implying a truncated or ignored revlog
None => fsrs
.memory_state_from_sm2(
c.ease_factor(),
c.interval as f32,
req.historical_retention,
)
.ok()?
.into(),
};
Card::convert(c, days_elapsed, memory_state)
})
.collect_vec();
let introduced_today_count = self
.search_cards(&format!("{} introduced:1", &req.search), SortMode::NoOrder)?
.len()
.min(req.new_limit as usize);
if req.new_limit > 0 {
let new_cards = (0..new_cards).map(|i| fsrs::Card {
id: -(i as i64),
difficulty: f32::NEG_INFINITY,
stability: 1e-8, // Not filtered by fsrs-rs
last_date: f32::NEG_INFINITY, // Treated as a new card in simulation
due: ((introduced_today_count + i) / req.new_limit as usize) as f32,
interval: f32::NEG_INFINITY,
lapses: 0,
});
converted_cards.extend(new_cards);
}
let deck_size = converted_cards.len();
let p = self.get_optimal_retention_parameters(revlogs)?;
let easy_days_percentages = parse_easy_days_percentages(&req.easy_days_percentages)?;
let next_day_at = self.timing_today()?.next_day_at;
let post_scheduling_fn: Option<PostSchedulingFn> =
if self.get_config_bool(BoolKey::LoadBalancerEnabled) {
Some(PostSchedulingFn(Arc::new(
move |card, max_interval, today, due_cnt_per_day, rng| {
apply_load_balance_and_easy_days(
card.interval,
max_interval,
today,
due_cnt_per_day,
rng,
next_day_at,
&easy_days_percentages,
)
},
)))
} else {
None
};
let review_priority_fn = req
.review_order
.try_into()
.ok()
.and_then(|order| create_review_priority_fn(order, deck_size));
let config = SimulatorConfig {
deck_size,
learn_span: req.days_to_simulate as usize,
max_cost_perday: f32::MAX,
max_ivl: req.max_interval as f32,
first_rating_prob: p.first_rating_prob,
review_rating_prob: p.review_rating_prob,
learn_limit: req.new_limit as usize,
review_limit: req.review_limit as usize,
new_cards_ignore_review_limit: req.new_cards_ignore_review_limit,
suspend_after_lapses: req.suspend_after_lapse_count,
post_scheduling_fn,
review_priority_fn,
learning_step_transitions: p.learning_step_transitions,
relearning_step_transitions: p.relearning_step_transitions,
state_rating_costs: p.state_rating_costs,
learning_step_count: req.learning_step_count as usize,
relearning_step_count: req.relearning_step_count as usize,
};
Ok((config, converted_cards))
}
pub fn simulate_review(
&mut self,
req: SimulateFsrsReviewRequest,
) -> Result<SimulateFsrsReviewResponse> {
let (config, cards) = self.simulate_request_to_config(&req)?;
let result = simulate(
&config,
&req.params,
req.desired_retention,
None,
Some(cards),
)?;
Ok(SimulateFsrsReviewResponse {
accumulated_knowledge_acquisition: result.memorized_cnt_per_day,
daily_review_count: result
.review_cnt_per_day
.iter()
.map(|x| *x as u32)
.collect_vec(),
daily_new_count: result
.learn_cnt_per_day
.iter()
.map(|x| *x as u32)
.collect_vec(),
daily_time_cost: result.cost_per_day,
})
}
pub fn simulate_workload(
&mut self,
req: SimulateFsrsReviewRequest,
) -> Result<SimulateFsrsWorkloadResponse> {
let (config, cards) = self.simulate_request_to_config(&req)?;
let dr_workload = (70u32..=99u32)
.into_par_iter()
.map(|dr| {
let result = simulate(
&config,
&req.params,
dr as f32 / 100.,
None,
Some(cards.clone()),
)?;
Ok((
dr,
(
*result.memorized_cnt_per_day.last().unwrap_or(&0.),
result.cost_per_day.iter().sum::<f32>(),
result.review_cnt_per_day.iter().sum::<usize>() as u32,
),
))
})
.collect::<Result<HashMap<_, _>>>()?;
Ok(SimulateFsrsWorkloadResponse {
memorized: dr_workload.iter().map(|(k, v)| (*k, v.0)).collect(),
cost: dr_workload.iter().map(|(k, v)| (*k, v.1)).collect(),
review_count: dr_workload.iter().map(|(k, v)| (*k, v.2)).collect(),
})
}
}
impl Card {
pub(crate) fn convert(
card: Card,
days_elapsed: i32,
memory_state: FsrsMemoryState,
) -> Option<fsrs::Card> {
match card.queue {
CardQueue::DayLearn | CardQueue::Review => {
let due = card.original_or_current_due();
let relative_due = due - days_elapsed;
let last_date = (relative_due - card.interval as i32).min(0) as f32;
Some(fsrs::Card {
id: card.id.0,
difficulty: memory_state.difficulty,
stability: memory_state.stability,
last_date,
due: relative_due as f32,
interval: card.interval as f32,
lapses: card.lapses,
})
}
CardQueue::New => None,
CardQueue::Learn | CardQueue::SchedBuried | CardQueue::UserBuried => Some(fsrs::Card {
id: card.id.0,
difficulty: memory_state.difficulty,
stability: memory_state.stability,
last_date: 0.0,
due: 0.0,
interval: card.interval as f32,
lapses: card.lapses,
}),
CardQueue::PreviewRepeat => None,
CardQueue::Suspended => None,
}
}
}