Anki/rslib/src/scheduler/fsrs/weights.rs

356 lines
12 KiB
Rust

// Copyright: Ankitects Pty Ltd and contributors
// License: GNU AGPL, version 3 or later; http://www.gnu.org/licenses/agpl.html
use std::iter;
use std::thread;
use std::time::Duration;
use anki_proto::scheduler::ComputeFsrsWeightsResponse;
use fsrs::CombinedProgressState;
use fsrs::FSRSItem;
use fsrs::FSRSReview;
use fsrs::ModelEvaluation;
use fsrs::FSRS;
use itertools::Itertools;
use crate::prelude::*;
use crate::revlog::RevlogEntry;
use crate::revlog::RevlogReviewKind;
use crate::search::Node;
use crate::search::SearchNode;
use crate::search::SortMode;
pub(crate) type Weights = Vec<f32>;
impl Collection {
pub fn compute_weights(&mut self, search: &str) -> Result<ComputeFsrsWeightsResponse> {
let mut anki_progress = self.new_progress_handler::<ComputeWeightsProgress>();
let timing = self.timing_today()?;
let revlogs = self.revlog_for_srs(search)?;
let items = fsrs_items_for_training(revlogs, timing.next_day_at);
let fsrs_items = items.len() as u32;
anki_progress.update(false, |p| p.fsrs_items = fsrs_items)?;
// adapt the progress handler to our built-in progress handling
let progress = CombinedProgressState::new_shared();
let progress2 = progress.clone();
thread::spawn(move || {
let mut finished = false;
while !finished {
thread::sleep(Duration::from_millis(100));
let mut guard = progress.lock().unwrap();
if let Err(_err) = anki_progress.update(false, |s| {
s.total = guard.total() as u32;
s.current = guard.current() as u32;
finished = s.total > 0 && s.total == s.current;
}) {
guard.want_abort = true;
return;
}
}
});
let fsrs = FSRS::new(None)?;
let weights = fsrs.compute_weights(items, Some(progress2))?;
Ok(ComputeFsrsWeightsResponse {
weights,
fsrs_items,
})
}
pub(crate) fn revlog_for_srs(
&mut self,
search: impl TryIntoSearch,
) -> Result<Vec<RevlogEntry>> {
let search = search.try_into_search()?;
// a whole-collection search can match revlog entries of deleted cards, too
if let Node::Group(nodes) = &search {
if let &[Node::Search(SearchNode::WholeCollection)] = &nodes[..] {
return self.storage.get_all_revlog_entries_in_card_order();
}
}
self.search_cards_into_table(search, SortMode::NoOrder)?
.col
.storage
.get_revlog_entries_for_searched_cards_in_card_order()
}
pub fn evaluate_weights(&mut self, weights: &Weights, search: &str) -> Result<ModelEvaluation> {
let timing = self.timing_today()?;
let mut anki_progress = self.new_progress_handler::<ComputeWeightsProgress>();
let guard = self.search_cards_into_table(search, SortMode::NoOrder)?;
let revlogs = guard
.col
.storage
.get_revlog_entries_for_searched_cards_in_card_order()?;
anki_progress.state.fsrs_items = revlogs.len() as u32;
let items = fsrs_items_for_training(revlogs, timing.next_day_at);
let fsrs = FSRS::new(Some(weights))?;
Ok(fsrs.evaluate(items, |ip| {
anki_progress
.update(false, |p| {
p.total = ip.total as u32;
p.current = ip.current as u32;
})
.is_ok()
})?)
}
}
#[derive(Default, Clone, Copy, Debug)]
pub struct ComputeWeightsProgress {
pub current: u32,
pub total: u32,
pub fsrs_items: u32,
}
/// Convert a series of revlog entries sorted by card id into FSRS items.
fn fsrs_items_for_training(revlogs: Vec<RevlogEntry>, next_day_at: TimestampSecs) -> Vec<FSRSItem> {
let mut revlogs = revlogs
.into_iter()
.group_by(|r| r.cid)
.into_iter()
.filter_map(|(_cid, entries)| {
single_card_revlog_to_items(entries.collect(), next_day_at, true)
})
.flat_map(|i| i.0)
.collect_vec();
revlogs.sort_by_cached_key(|r| r.reviews.len());
revlogs
}
/// Transform the revlog history for a card into a list of FSRSItems. FSRS
/// expects multiple items for a given card when training - for revlog
/// `[1,2,3]`, we create FSRSItems corresponding to `[1,2]` and `[1,2,3]`
/// in training, and `[1]`, [1,2]` and `[1,2,3]` when calculating memory
/// state. Returns (items, found_learn_entry), the latter of which is used
/// to determine whether the revlogs have been truncated when not training.
pub(crate) fn single_card_revlog_to_items(
mut entries: Vec<RevlogEntry>,
next_day_at: TimestampSecs,
training: bool,
) -> Option<(Vec<FSRSItem>, bool)> {
let mut last_learn_entry = None;
let mut found_learn_entry = false;
for (index, entry) in entries.iter().enumerate().rev() {
if matches!(
(entry.review_kind, entry.button_chosen),
(RevlogReviewKind::Learning, 1..=4)
) {
last_learn_entry = Some(index);
found_learn_entry = true;
} else if last_learn_entry.is_some() {
break;
}
}
let first_relearn = entries
.iter()
.enumerate()
.find(|(_idx, e)| e.review_kind == RevlogReviewKind::Relearning)
.map(|(idx, _)| idx);
if let Some(idx) = last_learn_entry.or(first_relearn) {
// start from the (re)learning step
if idx > 0 {
entries.drain(..idx);
}
} else if training {
// when training, we ignore cards that don't have any learning steps
return None;
}
// Filter out unwanted entries
let mut unique_dates = std::collections::HashSet::new();
entries.retain(|entry| {
let manually_rescheduled =
entry.review_kind == RevlogReviewKind::Manual || entry.button_chosen == 0;
let cram = entry.review_kind == RevlogReviewKind::Filtered && entry.ease_factor == 0;
if manually_rescheduled || cram {
return false;
}
// Keep only the first review when multiple reviews done on one day
unique_dates.insert(entry.days_elapsed(next_day_at))
});
// Compute delta_t for each entry
let delta_ts = iter::once(0)
.chain(entries.iter().tuple_windows().map(|(previous, current)| {
previous.days_elapsed(next_day_at) - current.days_elapsed(next_day_at)
}))
.collect_vec();
let skip = if training { 1 } else { 0 };
// Convert the remaining entries into separate FSRSItems, where each item
// contains all reviews done until then.
let items = entries
.iter()
.enumerate()
.skip(skip)
.map(|(outer_idx, _)| {
let reviews = entries
.iter()
.take(outer_idx + 1)
.enumerate()
.map(|(inner_idx, r)| FSRSReview {
rating: r.button_chosen as u32,
delta_t: delta_ts[inner_idx],
})
.collect();
FSRSItem { reviews }
})
.collect_vec();
if items.is_empty() {
None
} else {
Some((items, found_learn_entry))
}
}
impl RevlogEntry {
fn days_elapsed(&self, next_day_at: TimestampSecs) -> u32 {
(next_day_at.elapsed_secs_since(self.id.as_secs()) / 86_400).max(0) as u32
}
}
#[cfg(test)]
pub(crate) mod tests {
use super::*;
const NEXT_DAY_AT: TimestampSecs = TimestampSecs(86400 * 100);
pub(crate) fn revlog(review_kind: RevlogReviewKind, days_ago: i64) -> RevlogEntry {
RevlogEntry {
review_kind,
id: ((NEXT_DAY_AT.0 - days_ago * 86400) * 1000).into(),
button_chosen: 3,
..Default::default()
}
}
pub(crate) fn review(delta_t: u32) -> FSRSReview {
FSRSReview { rating: 3, delta_t }
}
pub(crate) fn convert(revlog: &[RevlogEntry], training: bool) -> Option<Vec<FSRSItem>> {
single_card_revlog_to_items(revlog.to_vec(), NEXT_DAY_AT, training).map(|i| i.0)
}
#[macro_export]
macro_rules! fsrs_items {
($($reviews:expr),*) => {
Some(vec![
$(
FSRSItem {
reviews: $reviews.to_vec()
}
),*
])
};
}
pub(crate) use fsrs_items;
#[test]
fn delta_t_is_correct() -> Result<()> {
assert_eq!(
convert(
&[
revlog(RevlogReviewKind::Learning, 1),
revlog(RevlogReviewKind::Review, 0)
],
true,
),
fsrs_items!([review(0), review(1)])
);
assert_eq!(
convert(
&[
revlog(RevlogReviewKind::Learning, 15),
revlog(RevlogReviewKind::Learning, 13),
revlog(RevlogReviewKind::Review, 10),
revlog(RevlogReviewKind::Review, 5)
],
true,
),
fsrs_items!(
[review(0), review(2)],
[review(0), review(2), review(3)],
[review(0), review(2), review(3), review(5)]
)
);
assert_eq!(
convert(
&[
revlog(RevlogReviewKind::Learning, 15),
revlog(RevlogReviewKind::Learning, 13),
],
true,
),
fsrs_items!([review(0), review(2),])
);
Ok(())
}
#[test]
fn cram_is_filtered() {
assert_eq!(
convert(
&[
revlog(RevlogReviewKind::Learning, 10),
revlog(RevlogReviewKind::Review, 9),
revlog(RevlogReviewKind::Filtered, 7),
revlog(RevlogReviewKind::Review, 4),
],
true,
),
fsrs_items!([review(0), review(1)], [review(0), review(1), review(5)])
);
}
#[test]
fn set_due_date_is_filtered() {
assert_eq!(
convert(
&[
revlog(RevlogReviewKind::Learning, 10),
revlog(RevlogReviewKind::Review, 9),
RevlogEntry {
ease_factor: 100,
..revlog(RevlogReviewKind::Manual, 7)
},
revlog(RevlogReviewKind::Review, 4),
],
true,
),
fsrs_items!([review(0), review(1)], [review(0), review(1), review(5)])
);
}
#[test]
fn card_reset_drops_all_previous_history() {
assert_eq!(
convert(
&[
revlog(RevlogReviewKind::Learning, 10),
revlog(RevlogReviewKind::Review, 9),
RevlogEntry {
ease_factor: 0,
..revlog(RevlogReviewKind::Manual, 7)
},
revlog(RevlogReviewKind::Learning, 4),
revlog(RevlogReviewKind::Review, 0),
],
true,
),
fsrs_items!([review(0), review(4)])
);
}
#[test]
fn single_learning_step_skipped_when_training() {
assert_eq!(
convert(&[revlog(RevlogReviewKind::Learning, 1),], true),
None,
);
assert_eq!(
convert(&[revlog(RevlogReviewKind::Learning, 1),], false),
fsrs_items!([review(0)])
);
}
}