Dockerized-Rust-ML/project/src/neural/model.rs

68 lines
2.1 KiB
Rust

use burn::{
nn::{
conv::{Conv2d, Conv2dConfig},
pool::{AdaptiveAvgPool2d, AdaptiveAvgPool2dConfig},
Dropout, DropoutConfig, Linear, LinearConfig, Relu,
},
prelude::*,
};
#[derive(Module, Debug)]
pub struct Model<B: Backend> {
conv1: Conv2d<B>,
conv2: Conv2d<B>,
pool: AdaptiveAvgPool2d,
dropout: Dropout,
linear1: Linear<B>,
linear2: Linear<B>,
activation: Relu,
}
#[derive(Config, Debug)]
pub struct ModelConfig {
num_classes: usize,
hidden_size: usize,
#[config(default = "0.5")]
dropout: f64,
}
impl ModelConfig {
/// Returns the initialized model.
pub fn init<B: Backend>(&self, device: &B::Device) -> Model<B> {
Model {
conv1: Conv2dConfig::new([1, 8], [3, 3]).init(device),
conv2: Conv2dConfig::new([8, 16], [3, 3]).init(device),
pool: AdaptiveAvgPool2dConfig::new([8, 8]).init(),
activation: Relu::new(),
linear1: LinearConfig::new(16 * 8 * 8, self.hidden_size).init(device),
linear2: LinearConfig::new(self.hidden_size, self.num_classes).init(device),
dropout: DropoutConfig::new(self.dropout).init(),
}
}
}
impl<B: Backend> Model<B> {
/// # Shapes
/// - Images [batch_size, height, width]
/// - Output [batch_size, class_prob]
pub fn forward(&self, images: Tensor<B, 3>) -> Tensor<B, 2> {
let [batch_size, height, width] = images.dims();
// Create a channel.
let x = images.reshape([batch_size, 1, height, width]);
let x = self.conv1.forward(x); // [batch_size, 8, _, _]
let x = self.dropout.forward(x);
let x = self.conv2.forward(x); // [batch_size, 16, _, _]
let x = self.dropout.forward(x);
let x = self.activation.forward(x);
let x = self.pool.forward(x); // [batch_size, 16, 8, 8]
let x = x.reshape([batch_size, 16 * 8 * 8]);
let x = self.linear1.forward(x);
let x = self.dropout.forward(x);
let x = self.activation.forward(x);
self.linear2.forward(x) // [batch_size, num_classes]
}
}