Anki/rslib/src/decks/mod.rs
Damien Elmes d7f9bccd1e rewrite DB check
- notes with wrong field count are now recovered instead of
being deleted
- notes with missing note types are now recovered
- notes with missing cards are now recovered
- recover_missing_deck() still needs implementing
- checks required
2020-05-12 21:13:34 +10:00

460 lines
14 KiB
Rust

// Copyright: Ankitects Pty Ltd and contributors
// License: GNU AGPL, version 3 or later; http://www.gnu.org/licenses/agpl.html
use crate::backend_proto as pb;
pub use crate::backend_proto::{
deck_kind::Kind as DeckKind, Deck as DeckProto, DeckCommon, DeckKind as DeckKindProto,
FilteredDeck, FilteredSearchOrder, FilteredSearchTerm, NormalDeck,
};
use crate::{
card::CardID,
collection::Collection,
define_newtype,
err::{AnkiError, Result},
text::normalize_to_nfc,
timestamp::TimestampSecs,
types::Usn,
};
mod counts;
mod schema11;
mod tree;
pub(crate) use counts::DueCounts;
pub use schema11::DeckSchema11;
use std::{borrow::Cow, sync::Arc};
define_newtype!(DeckID, i64);
#[derive(Debug)]
pub struct Deck {
pub id: DeckID,
pub name: String,
pub mtime_secs: TimestampSecs,
pub usn: Usn,
pub common: DeckCommon,
pub kind: DeckKind,
}
impl Deck {
pub fn new_normal() -> Deck {
let mut norm = NormalDeck::default();
norm.config_id = 1;
Deck {
id: DeckID(0),
name: "".into(),
mtime_secs: TimestampSecs(0),
usn: Usn(0),
common: DeckCommon::default(),
kind: DeckKind::Normal(norm),
}
}
pub fn new_filtered() -> Deck {
let mut filt = FilteredDeck::default();
filt.search_terms.push(FilteredSearchTerm {
search: "".into(),
limit: 100,
order: 0,
});
filt.preview_delay = 10;
filt.reschedule = true;
Deck {
id: DeckID(0),
name: "".into(),
mtime_secs: TimestampSecs(0),
usn: Usn(0),
common: DeckCommon::default(),
kind: DeckKind::Filtered(filt),
}
}
}
impl Deck {
pub(crate) fn is_filtered(&self) -> bool {
matches!(self.kind, DeckKind::Filtered(_))
}
pub(crate) fn prepare_for_update(&mut self) {
// fixme - we currently only do this when converting from human; should be done in pub methods instead
// if self.name.contains(invalid_char_for_deck_component) {
// self.name = self.name.replace(invalid_char_for_deck_component, "");
// }
// ensure_string_in_nfc(&mut self.name);
}
// fixme: unify with prepare for update
pub(crate) fn set_modified(&mut self, usn: Usn) {
self.mtime_secs = TimestampSecs::now();
self.usn = usn;
}
/// Return the studied counts if studied today.
/// May be negative if user has extended limits.
pub(crate) fn new_rev_counts(&self, today: u32) -> (i32, i32) {
if self.common.last_day_studied == today {
(self.common.new_studied, self.common.review_studied)
} else {
(0, 0)
}
}
}
// fixme: need to bump usn on upgrade if we rename
fn invalid_char_for_deck_component(c: char) -> bool {
c.is_ascii_control() || c == '"'
}
fn normalized_deck_name_component(comp: &str) -> Cow<str> {
let mut out = normalize_to_nfc(comp);
if out.contains(invalid_char_for_deck_component) {
out = out.replace(invalid_char_for_deck_component, "").into();
}
let trimmed = out.trim();
if trimmed.is_empty() {
"blank".into()
} else if trimmed.len() != out.len() {
// fixme: trimming leading/trailing spaces may break old clients if we don't bump mod
trimmed.to_string().into()
} else {
out
}
}
pub(crate) fn human_deck_name_to_native(name: &str) -> String {
let mut out = String::with_capacity(name.len());
for comp in name.split("::") {
out.push_str(&normalized_deck_name_component(comp));
out.push('\x1f');
}
out.trim_end_matches('\x1f').into()
}
impl Collection {
// fixme: this cache may belong in CardGenContext?
pub(crate) fn get_deck(&mut self, did: DeckID) -> Result<Option<Arc<Deck>>> {
if let Some(deck) = self.state.deck_cache.get(&did) {
return Ok(Some(deck.clone()));
}
if let Some(deck) = self.storage.get_deck(did)? {
let deck = Arc::new(deck);
self.state.deck_cache.insert(did, deck.clone());
Ok(Some(deck))
} else {
Ok(None)
}
}
}
impl From<Deck> for DeckProto {
fn from(d: Deck) -> Self {
DeckProto {
id: d.id.0,
name: d.name,
mtime_secs: d.mtime_secs.0 as u32,
usn: d.usn.0,
common: Some(d.common),
kind: Some(d.kind.into()),
}
}
}
impl From<DeckKind> for pb::deck::Kind {
fn from(k: DeckKind) -> Self {
match k {
DeckKind::Normal(n) => pb::deck::Kind::Normal(n),
DeckKind::Filtered(f) => pb::deck::Kind::Filtered(f),
}
}
}
fn immediate_parent_name(machine_name: &str) -> Option<&str> {
machine_name.rsplitn(2, '\x1f').nth(1)
}
impl Collection {
pub(crate) fn add_or_update_deck(&mut self, deck: &mut Deck, preserve_usn: bool) -> Result<()> {
// fixme: vet cache clearing
self.state.deck_cache.clear();
self.transact(None, |col| {
let usn = col.usn()?;
deck.prepare_for_update();
// fixme: bail
assert!(!deck.name.contains("::"));
// fixme: check deck name is not duplicate
// handle blank deck name, etc
if !preserve_usn {
deck.set_modified(usn);
}
if deck.id.0 == 0 {
col.match_or_create_parents(deck)?;
col.storage.add_deck(deck)
} else {
if let Some(existing_deck) = col.storage.get_deck(deck.id)? {
if existing_deck.name != deck.name {
return col.update_renamed_deck(existing_deck, deck, usn);
}
} else {
// fixme: this should only happen in the syncing case, and we should
// ensure there are no missing parents at the end of the sync
}
col.storage.update_deck(deck)
}
})
}
pub(crate) fn recover_missing_deck(&mut self, _did: DeckID) -> Result<()> {
// todo
Ok(())
}
pub fn get_or_create_normal_deck(&mut self, human_name: &str) -> Result<Deck> {
let native_name = human_deck_name_to_native(human_name);
if let Some(did) = self.storage.get_deck_id(&native_name)? {
self.storage.get_deck(did).map(|opt| opt.unwrap())
} else {
let mut deck = Deck::new_normal();
deck.name = native_name;
self.add_or_update_deck(&mut deck, false)?;
Ok(deck)
}
}
fn update_renamed_deck(&mut self, existing: Deck, updated: &mut Deck, usn: Usn) -> Result<()> {
// new name should not conflict with a different deck
if let Some(other_did) = self.storage.get_deck_id(&updated.name)? {
if other_did != updated.id {
// fixme: this could break when syncing
return Err(AnkiError::Existing);
}
}
self.match_or_create_parents(updated)?;
self.storage.update_deck(updated)?;
self.rename_child_decks(&existing, &updated.name, usn)
}
// fixme: make sure this handles foo::bar and FOO::baz
fn rename_child_decks(&mut self, old: &Deck, new_name: &str, usn: Usn) -> Result<()> {
let children = self.storage.child_decks(old)?;
let old_component_count = old.name.matches('\x1f').count() + 1;
for mut child in children {
let child_components: Vec<_> = child.name.split('\x1f').collect();
let child_only = &child_components[old_component_count..];
let new_name = format!("{}\x1f{}", new_name, child_only.join("\x1f"));
child.name = new_name;
child.set_modified(usn);
self.storage.update_deck(&child)?;
}
Ok(())
}
/// Add a single, normal deck with the provided name for a child deck.
/// Caller must have done necessarily validation on name.
fn add_parent_deck(&self, machine_name: &str) -> Result<()> {
let mut deck = Deck::new_normal();
deck.name = machine_name.into();
// fixme: undo
self.storage.add_deck(&mut deck)
}
/// If parent deck(s) exist, rewrite name to match their case.
/// If they don't exist, create them.
/// Returns an error if a DB operation fails, or if the first existing parent is a filtered deck.
fn match_or_create_parents(&mut self, deck: &mut Deck) -> Result<()> {
let child_split: Vec<_> = deck.name.split('\x1f').collect();
if let Some(parent_deck) = self.first_existing_parent(&deck.name, 0)? {
if parent_deck.is_filtered() {
return Err(AnkiError::DeckIsFiltered);
}
let parent_count = parent_deck.name.matches('\x1f').count() + 1;
let need_create = parent_count != child_split.len() - 1;
deck.name = format!(
"{}\x1f{}",
parent_deck.name,
&child_split[parent_count..].join("\x1f")
);
if need_create {
self.create_missing_parents(&deck.name)?;
}
Ok(())
} else if child_split.len() == 1 {
// no parents required
Ok(())
} else {
// no existing parents
self.create_missing_parents(&deck.name)
}
}
fn create_missing_parents(&self, mut machine_name: &str) -> Result<()> {
while let Some(parent_name) = immediate_parent_name(machine_name) {
if self.storage.get_deck_id(parent_name)?.is_none() {
self.add_parent_deck(parent_name)?;
}
machine_name = parent_name;
}
Ok(())
}
fn first_existing_parent(
&self,
machine_name: &str,
recursion_level: usize,
) -> Result<Option<Deck>> {
if recursion_level > 10 {
return Err(AnkiError::invalid_input("deck nesting level too deep"));
}
if let Some(parent_name) = immediate_parent_name(machine_name) {
if let Some(parent_did) = self.storage.get_deck_id(parent_name)? {
self.storage.get_deck(parent_did)
} else {
self.first_existing_parent(parent_name, recursion_level + 1)
}
} else {
Ok(None)
}
}
/// Get a deck based on its human name. If you have a machine name,
/// use the method in storage instead.
pub(crate) fn get_deck_id(&self, human_name: &str) -> Result<Option<DeckID>> {
let machine_name = human_deck_name_to_native(&human_name);
self.storage.get_deck_id(&machine_name)
}
pub fn remove_deck_and_child_decks(&mut self, did: DeckID) -> Result<()> {
self.transact(None, |col| {
let usn = col.usn()?;
if let Some(deck) = col.storage.get_deck(did)? {
let child_decks = col.storage.child_decks(&deck)?;
// top level
col.remove_single_deck(&deck, usn)?;
// remove children
for deck in child_decks {
col.remove_single_deck(&deck, usn)?;
}
}
Ok(())
})
}
pub(crate) fn remove_single_deck(&mut self, deck: &Deck, usn: Usn) -> Result<()> {
// fixme: undo
match deck.kind {
DeckKind::Normal(_) => self.delete_all_cards_in_normal_deck(deck.id)?,
DeckKind::Filtered(_) => self.return_all_cards_in_filtered_deck(deck.id)?,
}
self.storage.remove_deck(deck.id)?;
self.storage.add_deck_grave(deck.id, usn)
}
fn delete_all_cards_in_normal_deck(&mut self, did: DeckID) -> Result<()> {
let cids = self.storage.all_cards_in_single_deck(did)?;
self.remove_cards_inner(&cids)
}
fn return_all_cards_in_filtered_deck(&mut self, did: DeckID) -> Result<()> {
let cids = self.storage.all_cards_in_single_deck(did)?;
self.return_cards_to_home_deck(&cids)
}
fn return_cards_to_home_deck(&mut self, cids: &[CardID]) -> Result<()> {
let sched = self.sched_ver();
for cid in cids {
if let Some(mut card) = self.storage.get_card(*cid)? {
// fixme: undo
card.return_home(sched);
self.storage.update_card(&card)?;
}
}
Ok(())
}
}
#[cfg(test)]
mod test {
use super::{human_deck_name_to_native, immediate_parent_name};
use crate::{
collection::{open_test_collection, Collection},
err::Result,
};
fn sorted_names(col: &Collection) -> Vec<String> {
col.storage
.get_all_deck_names()
.unwrap()
.into_iter()
.map(|d| d.1)
.collect()
}
#[test]
fn parent() {
assert_eq!(immediate_parent_name("foo"), None);
assert_eq!(immediate_parent_name("foo\x1fbar"), Some("foo"));
assert_eq!(
immediate_parent_name("foo\x1fbar\x1fbaz"),
Some("foo\x1fbar")
);
}
#[test]
fn from_human() {
assert_eq!(&human_deck_name_to_native("foo"), "foo");
assert_eq!(&human_deck_name_to_native("foo::bar"), "foo\x1fbar");
assert_eq!(&human_deck_name_to_native("fo\x1fo::ba\nr"), "foo\x1fbar");
assert_eq!(
&human_deck_name_to_native("foo::::baz"),
"foo\x1fblank\x1fbaz"
);
}
#[test]
fn adding_updating() -> Result<()> {
let mut col = open_test_collection();
let deck1 = col.get_or_create_normal_deck("foo")?;
let deck2 = col.get_or_create_normal_deck("FOO")?;
assert_eq!(deck1.id, deck2.id);
assert_eq!(sorted_names(&col), vec!["Default", "foo"]);
// missing parents should be automatically created, and case should match
// existing parents
let _deck3 = col.get_or_create_normal_deck("FOO::BAR::BAZ")?;
assert_eq!(
sorted_names(&col),
vec!["Default", "foo", "foo::BAR", "foo::BAR::BAZ"]
);
Ok(())
}
#[test]
fn renaming() -> Result<()> {
let mut col = open_test_collection();
let _ = col.get_or_create_normal_deck("foo::bar::baz")?;
let mut top_deck = col.get_or_create_normal_deck("foo")?;
top_deck.name = "other".into();
col.add_or_update_deck(&mut top_deck, false)?;
assert_eq!(
sorted_names(&col),
vec!["Default", "other", "other::bar", "other::bar::baz"]
);
Ok(())
}
}